

 Page 1 of 74

Data Hog Plus-U
User’s Manual

 Version : 2.16

 Date : 02/16/2022

Data Hog Plus-U: High speed and low power battery or USB powered

programmable serial port controller. Convert between USB serial, RS232, +3.3V

logic level serial, SPI, and I2C in any combination and direction with optional

auto-baud detection. SD card with Data Logger, Protocol Analyzer, custom

batch programs, and Upload/Download Files and Firmware. Supplies up to

250mA @ +3.3V power out plus six GPIO pins with interrupts, 12 bit ADC

conversion, and 10 segment bar graph. Command line interface, API, timer, and

high accuracy Clock/Calendar. Complete programmable control and monitoring

of USB, RS232, I2C/SPI, logic level serial and GPIO.

 Page 2 of 74

Table of Contents

1 – Hardware ... 4

1.1 – Battery & Power .. 4

1.2 – Clock and Clock Battery ... 5

1.3 – RS232 Serial Port & Null Modem Adapter ... 5

1.4 – USB Port ... 5

1.5 – SD Card .. 6

1.6 – +3.3V Logic Level Serial, SPI, & I2C Ports ... 6

1.7 – GPIO ... 7

1.8 – Bug Reports & Change Requests ... 7

2 – Ten Segment Bar Graph LED Display ... 8

3 – Serial Communications Protocol .. 10

3.1 – Sign-on (or Log-on) to Command Mode .. 10

3.2 – List of Terminal Commands ... 10

3.3 – Error Codes .. 12

3.4 – Terminal Command Details ... 13

3.5 – Low Power Modes ... 24

4 – Programming (Batch File) Protocol .. 26

4.1 – Batch File Commands .. 27

4.2 – Batch File Examples ... 36

5 – Updating Data Hog Plus Firmware .. 37

5.1 – D-Terminal Program .. 37

6 – USB, RS232, and Logic Level Serial Ports ... 38

6.1 – Logic Level Serial Port .. 39

7 – SPI and I2C Ports.. 41

7.1 – SPI Port .. 41

7.2 – I2C Port .. 44

8 – Converting/Adapting, Logging, & Protocol Analyzing 45

8.1 – Converting/Adapting ... 45

8.2 – Data Logging/Protocol Analyzing during Connect ... 47

8.3 – Data Capture (logging) ... 49

9 – GPIO (General Purpose Input/Output) .. 52

9.1 – GPIO Inputs .. 54

9.2 – GPIO Outputs ... 55

9.3 – EXTERNAL TRIGGER System ... 56

9.4 – ADC (Temperature & Voltage Monitor) System .. 62

10 – Complete Example (SPI Radio Module Monitor) .. 66

 Page 3 of 74

Terminal & Batch Command Reference:

Command Page Command Page

Clock CK, TIME, DATE 13 Executing Batch File RUN 27

New Firmware NF 14 CALL 28

Password & Model PWD, MODEL 14 EXIT 27

Resetting RESET 15 Batch Control GOTO 31
 RESTART 32 IF 31

LED Control LEDS 15 LOOP 32

 LEDLEVEL 15 Comment REM 28
 LEDO 15 ; 28

Baud Rate BAUD 16 / 28

 BOOTBAUD 16 Timer TIMER 28

 AUTOBAUD 16 Serial Input / Output RCV 30

Power SLEEP 17 SEND 29

 IDLE 27 File Access OPEN 33
 DEEPSLEEP 17 OPENN 33

Serial Number SERIALNUM 17 OPENA 33

SD Card MEM 18 CLOSE 33

 MEM=INIT! 18 File Read/Write INPUT 33
 FORMAT 18 OUTPUT 28

Directories CD 18 SEEK 34
 DIR 19 SEEKSTART 34
 TREE 19 SEEKEND 34
 MD 19 LINESEEK 34
 RD 20 Set Variable %x = <val> 35

 DEFDIR 21

 DLDIR / ULDIR 21 Adapting/Converting CONNECT 46

Files DEL 20 Protocol Analysis CONNECT=LOG 47
 REN 20 CONNECT=LOGHTML 47

 COPY 21

File Output TYPE 21 USB Port: SENDU, RCVU, DLU, ULU,
38

 TYPEH 21 BAUDU, BOOTBAUDU, etc.

 TABS 21 RS232 Port: SEND1, RCV1, DL1, UL1,
38

Store Text File STORE 22 BAUD1, BOOTBAUD1, etc.

 STOREA 22 +3.3V Serial: SEND2, RCV2, DL2, UL2,
38

Store Text/Binary FASTLOG 49 BAUD2, BOOTBAUD2, etc.

 TRIGLOG 49 SPI Port: SENDS, RCVS, SPICS, SPI 42

 MAXFILESIZE 51 I2C Port: SENDI, RCVI, I2C 44

Download DL / DLY 23

 DLX 23

Upload UL / ULY 23

 ULX 23

GPIO Pin Control GPIO 53

 TRIGGER 56

 ADC 62

 Page 4 of 74

1 – Hardware

The Data Hog Plus (DH+) is a compact battery powered device with the following features:

• 9V Battery Compartment.

• USB Port (“B” Style).

• RS232 serial port connector (DB9 Male).

• Power On/Off switch and 10 segment LED bar graph.

• SD Card Slot.

• Side port for power input/output.

• Side port for SPI/I2C/Logic Level Serial connection.

• Internal temperature compensated high accuracy clock/calendar with battery.

1.1 – Battery & Power
The DH+ will operate from an input voltage of around 4V (5V or higher

recommended) to as high as 16V DC. It draws from ~1.5mA to as much as 70mA

when all the LED’s are on and RS232 port is in use. To make the unit portable and

easy to use, a small 9V battery compartment is located at the top end of the case.

Simply open the port and install a 9V battery or plug in a USB cable to power unit

from USB port. When both USB and a battery are present, the battery is used first.

Depending on what the unit is being used for, a typical 9V battery will last from 24 hours to as much as 2

weeks of continuous use. Many users use lower modes like SLEEP and DEEPSLEEP or only turn on the

unit when it is needed, so the DH+ lasts much longer under typical circumstances. If providing power by

USB, be sure to use a full power port. See section 3.5 for information on using low power modes.

If USB power is not available, there are several ways other than an alkaline 9V battery to power DH+:

1) Connect a “9V Battery Adapter” such as the “Pinpoint 9-Volt Battery Universal AC Adapter Kit”

(available on Amazon and other retailers). This simple and inexpensive device plugs into a wall

socket and outputs 9V to a connector that plugs right into the 9V connector already on the DH+.

2) Use a higher capacity 9V battery such as the Energizer L522BP2 9V Lithium battery. This battery

gives about 40% longer run time than a standard 9V battery.

A second alternative is the 1200mAhr Lithium Battery from PKCELL (Li-SOCl2) which will last twice

as long as a conventional 9V battery.

3) Use the power input/output port that is present on the side of the DH+ shown here:

The first two pins (“GND” and “V+ IO”) serve as either power

output (when a battery, USB, or other power source is installed)

or as a power input if positive power and ground are applied to

these pins. Do NOT apply more than 16V to the “V+ IO” pin or

draw more than 250mA of power out of “V+ IO” or “+3.3V” pins!

For longer term use, the DH+ has secondary power input pads on the

circuit board inside case. This is located as shown in this image:

Simply solder wires to the board (+ and -) and connect the other end to a

4V to 16V source. Make sure you connect the pad labeled “+” to positive

voltage and the pad labeled “-“ to ground.

The commands LEDS, SLEEP, DEEPSLEEP, and IDLE can help lower the power draw for those

applications that need the lowest power possible. See section 3 and 3.5 for more information.

 Page 5 of 74

1.2 – Clock and Clock Battery
The DH+ has a high accuracy temperature compensated real-time clock

which tracks the current time and date. This is set at the factory to the U.S.

West Coast/Pacific Time, but can be changed at any time by the user with

the TIME, DATE, and CK commands (see section 3).

The clock is run from a 3V coin cell battery installed in the coin battery

holder inside the case (as shown in the picture here) which preserves the

current time/date even when the switch is in the OFF position. This battery

will typically last from 5 to 8 years before it must be replaced.

If the clock battery gets low, the rightmost red LED will blink quickly after power on with no other LED’s

being lit. In this situation, you must replace the clock battery before the DH+ can be used. The battery

used is a 3.2V Panasonic # CR-2032VP (or equivalent).

1.3 – RS232 Serial Port & Null Modem Adapter
To enable communication between two serial devices the transmitter from Device A must be tied to the

receiver from Device B, and the receiver on Device A must be tied to the transmitter on Device B. For a

typical setup like a computer connected to a modem, the computer has a Male DB9 connector with pins

which is then plugged into a Female DB9 connector with sockets on a modem. The computer is called the

“Data Terminal Equipment (or DTE)” and the modem is called a “Data Communication Equipment (or

DCE)”. All this means is that the wiring inside the DB9 connector, cable, and modem is setup to tie the

receive and transmit lines correctly to each other.

The Data Hog Plus has a male DB9 connector and acts just like a computer in the role of a DTE device.

The male DB9 connector is designed to be plugged into things just like a computer is. This can cause a

problem though if you want to connect the DH+ directly to another DTE device (like your computer)

because you are now trying to plug to two DTE devices with male DB9 connectors together.

To get around this problem, the DH+ comes with a “NULL MODEM ADAPTER”. This has two female DB9

connectors on it and reverses the connection so that the DH+ can be connected directly to another DTE

device like your computer. 99% of the time this is all that is required.

Unfortunately, some manufacturers don’t follow the rule of male pins being DTE devices and female pins

being DCE devices. In this case, you may need to customize your serial connection or purchase a “gender

changer”. The following chart shows the exact pinout of the Data Hog Plus DB9 connector:

 9 Pin Sub-D

#1 - Carrier Detect DCD <- (Input to Data Hog Plus)

#2 - Receive RXD <- (Input to Data Hog Plus)

#3 - Transmit TXD -> (Output from Data Hog Plus)

#4 - Data Term. Rdy DTR -> (Output from Data Hog Plus)

#5 - Ground GND <-> (Common Ground)

#6 - Data Set Ready DSR <- (Unused by Data Hog Plus)

#7 - Ready To Send RTS -> (Output from Data Hog Plus)

#8 - Clear To Send CTS <- (Unused by Data Hog Plus)

#9 - Ring Detect RNG <- (Unused by Data Hog Plus)

1.4 – USB Port
The DH+ contains a “B” style USB connector on the side of the case. Plug this into almost any Windows,

Linux, or other device which supports USB. The DH+ uses the FTDI # FTX230XS chip for USB to Serial

conversion and most operating systems support this chip directly and immediately. If you need a separate

driver to install, please refer to www.ftdichip.com or install the “D-Terminal” application and follow

instructions for installing the device driver.

http://www.ftdichip.com/

 Page 6 of 74

1.5 – SD Card
The Data Hog Plus is designed to be used with a wide variety of SD Cards. Everything from high-speed

Class 10 cards to low-speed Class 1 cards can normally be used without issue. However, use caution

when purchasing or using very inexpensive SD Cards. Some manufacturers utilize low-quality memory

which either fails outright or does not last more than a few read/write cycles. This is not a failure of the

Data Hog Plus, but a result of a badly made memory card.

It is recommended to only use name brand SD Cards manufactured by companies like SanDisk, Kingston,

Sony, and Lexar. Avoid any off-brand card which is sold extremely cheaply. These cards will not last and

can give the false impression that the Data Hog Plus is not working, not to mention may cause the loss of

collected data.

In addition, if you plan on using an SD Card for storing large amounts of frequently changing data (such as

video or image files), select an “Industrial” or “High Endurance” type of card. These most often contain

advanced features to prevent loss of data after many read/write cycles.

It should be noted that even a high-quality SD Card it will not last forever. Frequent write, read, erase

cycles will eventually degrade even the best memory and will require replacement.

1.6 – +3.3V Logic Level Serial, SPI, & I2C Ports
On the side of the Data Hog Plus case there are two connectors – a 2 pin and an 8 pin. The two-pin

connector is the power in/out port described in section 1.1 above. The eight-pin connector is the logic level

serial and SPI/I2C port connection:

The two rightmost pins are the logic level serial

(TXD & RXD). These pins along with the GND

(Ground) pin allow you to connect the DH+ to

almost any device with a logic level serial port.

Note that “logic level” means that the port uses

2.8V to 3.3V for “high” and 0V for “Low”. This port

is referred to as the second serial port (or “COM2”)

for DH+ commands.

See section 6 for complete details.

The middle four pins are used for the SPI/I2C port. These are what is known as “synchronous” serial and

are referred to by the system as the “S” port or “COMS” port when utilizing it as an SPI connection or as

the “I” port or “COMI” when utilizing it as an I2C. See section 7 for complete details on using these ports.

WARNING: Although the pins are protected to some degree, you can still permanently damage the

Data Hog Plus beyond repair by connecting it up to a high voltage, connecting to the wrong pin, or

creating a short between power or other pins. ONLY change connections while the power switch is in

the OFF position and carefully check all connections before proceeding. If you discover a problem,

immediately remove power and make sure the unit is not warm before proceeding.

IMPORTANT: There is a resettable fuse built into the circuit board which trips automatically if more

than about 0.5Amps of power is drawn from either the 9V battery or the USB input. This is a self-

healing type of fuse which stays “open” as long as the drain is present, and the heals when the short is

removed to “close” again. If your unit stops working due to a short circuit, disconnect all power and

external devices and wait 5-10 minutes for the fuse to recover before powering it up again.

 Page 7 of 74

1.7 – GPIO
The Data Hog Plus supports up to six GPIO (General Purpose Input/Output) pins. These pins share the

SPI/I2C and Logic Level Serial port pins so cannot be used at the same time if these other pins are

enabled. GPIO is labeled #1 to #6 as follows:

Function Variable Name SEND/OUTPUT Control Shares Pin With ARM CPU Pin

GPIO #1 %G1 \G1x RXD PC0

GPIO #2 %G2 \G2x TXD PC1

GPIO #3 %G3 \G3x MOSI PB15

GPIO #4 %G4 \G4x MISO PB14

GPIO #5 %G5 \G5x CLK PB13

GPIO #6 %G6 \G6x CS PB12

Specifically, the GPIO pins are numbered like this:

Turning on GPIO functionality on any pin will disable the logic level serial (GPIO #1 or GPIO #2), the SPI

(GPIO #3-#6), or the I2C (GPIO #3 or GPIO #4). Similarly, enabling the logic level serial, SPI, or I2C

functions automatically turns off the GPIO (if enabled).

Each GPIO can be configured as an Input or Output. When configured as an Input, the GPIO can

optionally be pulled High (to +3.3V) or Low (to Ground). Pull up or down resistance is ~40K ohms, with a

“low” (or “0”) being around 1V or less and a “high” (or “1”) being around 2V or more.

When configured as an Output, the GPIO’s can source or sink +/- 8mA. Refer to the ST Microelectronics #

STM32L451 data sheet for more specific information on the electrical characteristics of the GPIO pins.

See section 9 of the manual for more information on using the GPIO. It is recommended users become

familiar with the terminal command line and batch files before trying to use GPIO.

EXTERNAL TRIGGER’s:

All of the GPIO’s can also be used in “EXTERNAL TRIGGER” mode which gives some advanced features

when detecting state changes and to wake up from DEEPSLEEP. See section 9.3 for more information.

1.8 – Bug Reports & Change Requests
Diamond Edge Technology is dedicated to its products and customers. If you find a bug or have a new

feature request, please email us at ryan@detllc.com. If the feature is one that we think others might also

use, it is likely we can quickly add it for you and send you a firmware update. Thank you for your support

of the Data Hog Plus-U!

#6 #5 #4 #3 #2 #1

mailto:ryan@detllc.com

 Page 8 of 74

2 – Ten Segment Bar Graph LED Display

The Data Hog Plus (DH+) indicates its current status with different displays on the ten segment
LED bar graph. Users can custom program the display to show anything desired, or turn the
display off to save power. By default, the LED display acts as follows:

1. Power on/Initialization - Two LEDs travel from the left and right towards the center, and
then back again. This shows that the unit is powering on and initializing.

2. SD Card Status
a. SD CARD INSTALLED

LED’s will display from left to right (on a 1-10 scale) how much memory is used. For
example, if 63% of the memory on the card is used to first 6 LED’s will blink:

b. SD NOT INSTALLED

A single LED will blink rapidly from left to right again until a SD card is plugged in.

Once SD is recognized, LEDs will show memory used and continue to step 3.

 (and so on to 10th LED then back again)

3. Serial Cable Not Connected - The middle 4 LED’s will blink while waiting for a serial cable

to be plugged in:

 Page 9 of 74

4. Connected, Step 1:

a. The Data Hog Plus by default will wait to receive a Ctrl+E (0x05) at 19200bps from

the connected device. While this process is happing the 4th LED will blink:

b. Once the Ctrl+E is received, it will switch to command mode indicated by the outside

2 LED’s staying ON, with the 4th LED blinking.

NOTE: The Data Hog Plus can be configured to operate in many different ways

when a cable is plugged in. It can automatically upload a file, send and receive

custom strings and characters, and do almost anything else under your control.

Refer to the “Serial Protocol” and “Batch File” sections for more information.

By default, it simply waits for commands to be sent to it via the serial port.

5. Connected, Step 2: If passwords have been enabled, the 5th LED will start blinking. Send

the password (with “PWD=<password>” command) to continue:

6. Connected, Step 3: If the DH+ has been configured to start an upload or download, or it

receives a command to start an upload or download, the 6th LED will start blinking until the

download or upload starts:

Once the download or upload starts, it switches to the 7th LED blinking and LED’s 3, 4, & 5

showing a changing graph of each block sent or received:

*

*

*

*

*

*

*

*

*

When the file is done downloading or uploading, it will switch back to the 6th LED blinking

and wait for the next command.

7. Connected, Step 4: If the DH+ has been configured to start an upload or download

immediately on power up, then at the end of that process it will pause with no LED’s

blinking and show the amount of memory left on the SD card like this:

 (This shows ~90% of the memory used – No LED’s are blinking!)

This display of memory used is stopped with another command being received (or

receiving a Ctrl+E).

 Page 10 of 74

3 – Serial Communications Protocol

The Data Hog Plus (DH+) USB port and RS232 port can range in speed from 300 to 2Mbps (115Kbps is

the max supported by many other products) with optional auto-baud rate detection. The USB/RS232 ports

are normally used to connect the DH+ to a computer or any other device with a compatible port that you

want to control, adapt, convert, or store data from.

The DH+ supports a set of terminal commands that any program or communication system can send while

it is in “Command Mode”. By default, command mode becomes active when the DH+ receives a single

Ctrl+E character (0x05) which is usually sent by a computer running a terminal program like “D-Terminal”

while plugged into the USB port or the RS232 port (usually through a NULL-MODEM adapter) or through

the logic level serial port.

3.1 – Sign-on (or Log-on) to Command Mode
Send a single Ctrl+E (0x05) character to the DH+ to enter “Command Mode”. While in Command Mode,
you can send different commands that control the DH+ like downloading files, formatting the SD card, etc.
This is often referred to as a “Terminal Emulator”. The response to the Ctrl+E is a sign on string like this:

 DHP#200a 04/04/21

The values after the “DHP#” are the firmware version and date of firmware release. This signals the DH+
is now in command mode and is ready to process new commands (see below). It also verifies that you are
connected and that the baud rate matches.

NOTE: If passwords are enabled, an asterisk (“*”) will appear at the end of the sign-on string. You must
send the password with the “PWD=<password>” command before any other commands will be processed.

3.2 – List of Terminal Commands
The following commands are available:

 SD Card File & Directory Specific Commands:

• DIR/DIR <path> - Displays current file directory of the SD card or the files in the sub-directory <path>

• CD <dir> - Changes the current working directory

• TYPE <file> - Outputs a text file.

TABS=<size> - Sets the size of tabs (0=Default, 1-100 fixed size with spaces)

• TYPEH <file> - Outputs a file as hexadecimal values.

• DEL <file> - Deletes a file (can also use ERASE).

• MD/RD <path> - Makes a directory or removes a directory

• REN <src><dst> - Renames <src> to <dst>

• COPY <src><dst>- Copies <src> to <dst>

• TREE - Displays a tree view of all existing directories from current directory.

Upload/Download Commands:

• DL / DLY - Starts a YModem download (puts data onto the DH+ SD Card). You can optionally

 specify a <path> and/or <file> name, though YModem supports this itself.

• DLX <file> - Starts XModem download (stores data on Data Hog Plus) into <file>.

• UL/ULY <file> - Starts YModem upload (data from Data Hog Plus to external device) of <file(s)>.

• ULY <file> - Starts XModem upload (data from Data Hog Plus to external device) or <file(s)>.

• DLDIR <path> - Sets the default download directory for downloading files into DH+.

ULDIR <path> - Sets the default upload directory for uploading files from DH+.

• STORE <file> - Starts a text file download into file named <file>. If <file> is blank, will create a

 a file named “yyyy-mm-dd hhmmss.txt”.

• FASTLOG <file> - Similar to STORE except it highly prioritizes the capture (see section 8.3)

• TRIGLOG <file> - Similar to FASTLOG except GPIO triggers can exit the mode.

 Page 11 of 74

SD Card Specific Commands:

• FORMAT=YES! - Reformats the SD Card.

• MEM - Display SD Card status (Size, Amount Used, Disk Status)

• MEM=INIT! - Re-initializes SD Card link.

• MAXFILESIZE - Gets or sets the maximum file size for FASTLOG and TRIGLOG.

System Commands:

• CK - Clock Get or Set (time or date).

TIME / DATE - Gets or Sets the Time and Date (TIME also allows setting time zone and DL Savings)

• BAUD - Changes the current baud rate (will revert to original baud on power up).

BOOTBAUD - Changes the current baud rate and sets the default baud rate on power up.

AUTOBAUD - Configures the auto-baud rate detect functionality.

• MODEL - Gets or Sets the type of Data Hog Plus and initializes options for that model.

• DEFDIR <path> - Sets the default directory when system powers on.

• SERIALNUM - Gets/sets the last 10 characters of the serial number (first 10 are set by DET and should

 not be changed by user).

• LEDS - Turns On or Off the LED’s (turn off to save power).

LEDO - Overrides other LED settings to force LED to specific state.

LEDLEVEL - Sets the bar graph to a level from 0 to 10.

• SLEEP - Enters low power sleep mode.

DEEPSLEEP - Enters VERY low power mode (see section 3.5)

• PWD+ - Set Password

• PWD= - Send Password

• NF=YES! - Start Firmware Upload via YModem.

• RESET - Restores all settings to their original value (except Serial # and Manufacture Date)

• TIMER=<action> - Starts, Stops, Resets, or displays the high-speed timer.

• CONNECT - Enables tying the USB, RS232, and Logic Level serial ports together with or without

 a data logger and protocol analyzer.

• GPIO - Configures the GPIO pin functions including reading back values and setting outputs.

TRIGGER - Configures and enables the GPIO “EXTERNAL TRIGGER” functions.

ADC - Configures and enables Analog to Digital Conversion pins and temperature monitor.

Direct Control (often used with batch file execution):

• SEND <text> - Sends out a specific string. This is often used in combination with a Batch file.

• RCV <text> - Waits for a specific string to be sent back.

• IF <text> - Checks if the last thing received is equal to <text> and then jumps to <label> if it is.

 GOTO <label> See the “Batch File Execution” section for more information.

• LOOP <x><label>- Repeats <x> number of times by jumping to <label>.

• GOTO <label> - Jumps to a point in the batch file.

• REM <text> - Marks the rest of the line as a “remark”.

• IDLE <time> - Idles the system until a specific time or for a set number of seconds.

• RUN <file> - Runs a different batch file.

• CALL <file> - Runs a different batch file and then returns to current batch file when done.

• RESTART <time> - Reboots the Data Hog Plus immediately or after a certain amount of time.

• EXIT <code> - Exits out of running batch file.

File Read/Write (most often used with batch file execution):

• OPENN <file> - Opens a new file for writing. If the file exists, it is automatically overwritten.

OPENA <file> - Opens a file for writing. If the file exists, new data is appended to the end.

OPEN <file> - Opens an existing file for reading. If the file does not exist, an error is returned.

• CLOSE - Closes the file opened by OPENN, OPENA, or OPEN.

• OUTPUT <data> - Writes data to an open file.

• INPUT <data> - Reads data from an open file.

• SEEK - Jumps to a specific location in a file.

SEEKEND - Jumps to end of a file (with optional offset)

SEEKSTART - Jumps to beginning of a file.

• LINESEEK - Jumps to a specific line of a file.

 Page 12 of 74

3.3 – Error Codes
In the case of a terminal command formatting error, a batch file command error, or if something else goes

wrong, the DH+ sends out one of the following error responses instead of either “OK” or the data

requested.

ERR#00 (Unknown Command!)

ERR#01 (Password not sent!)

ERR#02 (Incorrect Parameters!)

ERR#03 (SD Card not installed!)

ERR#04 (SD Card not working!)

ERR#05 (SD Card Error!)

ERR#06 (File does not exist!)

ERR#07 (Directory error!)

ERR#08 (Directory does not exist!)

ERR#09 (Directory already exists!)

ERR#10 (Program Flash Upload Error!)

ERR#11 (Rename error!)

ERR#12 (Formatting error!)

ERR#13 (Can’t open file!)

ERR#14 (File Delete Error!)

ERR#15 (Download Error!)

ERR#16 (Upload Error!)

ERR#17 (Copy Error)

ERR#18 (SPI Error)

ERR#19 (Can’t open Log File Error)

Batch File Errors:
ERR#20 (Goto Label Error)

ERR#21 (Send format error)

ERR#22 (If/Goto format error)

ERR#23 (CALL nesting error)

ERR#24 (Loop Error)

ERR#25 (File OPEN/CLOSE error)

ERR#26 (File Seek error)

 Page 13 of 74

3.4 – Terminal Command Details
The following commands are supported while logged on and are received by the USB, RS232,

and/or logic level serial ports (see section 6).

ALL of these commands also work from inside of a batch file (see section 4). However, users will

frequently use these commands directly from a terminal.

Terminal Command – Clock (CK) Format: CK

 CK=<time>

 CK=<date>

 CK=<date>,<time>

Returns the current time & date (with just CK on the command line) or will set the time or the date
to a specific value. For example:

 CK=12:23:00 (Sets the time to 12:23:00pm)

 CK=08/11/17 (Sets the date to August 11th, 2017)

 CK=12:23:00,08/11/17 (Sets the time to 12:23:00pm and date to August 11th, 2017)

Just using CK on the command line by itself returns the current time & date like this:

 CK

 Time=07:01:55 Date=09/12/17

Terminal Command – Clock Time & Date Format: TIME or DATE

 TIME=<time> or DATE=<date>

These are similar to CK=<time> and CK=<date> and are included to make it easier to remember
the command for setting the system time and date.

In addition, you can add to the command DLON (to turn on Daylight Savings Adjust), DLOFF (to
turn off daylight savings adjust, and ZONE=<val> to set the time zone where <val> is from “-11” to
“+12” for the UTC zone. You can also use “PST”, “EST”, “MST”, “CST”, “AKST” to specify a
specific zone by name. For example:

TIME=DLON,ZONE=PST - Sets Daylight Savings ON and sets the time zone to “-8” (Pacific

 standard time).
TIME=DLOFF,ZONE=-3 - Sets Daylight Savings OFF and sets the time zone to “-3”.

Terminal Command – Send/Set Password Format: PWD=<x>

 PWD+<x>

Sends or sets the current password. Use PWD=<x> to send the current password and DH+ will
respond with “OK” if it is correct, or “ERR#02” if it is not. Passwords are NOT case sensitive.

Use PWD+<x> to set the password to a new string. This also turns on passwords if they are
currently disabled.

Use PWD+ to disable the password.

 Page 14 of 74

Terminal Command – New Flash (NF) Format: NF=YES!

This function starts a firmware update on the Data Hog Plus as follows:

1) After this command is sent, the program will send “YModem Start …” and wait for the initial
header block to be sent. Nothing has been done to the original code yet - and won’t be
until a valid header block is received. Power can be removed and reapplied and system
will return to normal operation at this point.

2) Once the header block is received, the current program in memory will be erased and the
system will download and store the uploaded code into the program flash memory.

3) At the end, system sends either “ERR!” on failure or “GO!” if succeeded.

4) Data Hog Plus does a hard reset and restarts.

A firmware update is a fairly complex process that must be performed in the exact steps indicated,
otherwise a catastrophic failure could occur. You WILL BRICK THE UNIT AND VOID YOUR
WARRANTY if you load something in other than approved Data Hog Plus code!

Make sure you are plugged into the USB port or your battery is fresh before starting this
process.

Terminal Command – Set Model & Parameters (MODEL) Format: MODEL

 MODEL=<param>

MODEL controls some basic ways the DH+ operates:

MODEL=U

MODEL=U,<login>,<ul/dl>

<file>

General purpose Data Hog Plus-U. Users can control the DH+ through
the USB, RS232, or logic level serial port directly, use a batch file on
the SD card, or use the Upload/Download option on power up.

There several options:

<login> - Set to “0” to disable needing the Ctrl+E to login, or “1” to
 enable.

<ul/dl> - Specifies starting an Upload (ul/ulx/uly) or Download
 (dl/dlx/dly) with <file> as soon as a SD card and cable is
 detected.

NOTE: Start YModem downloads on power up without a file name like
this:

 MODEL=U,DLY …or… MODEL=U,DL

The DH+ will store the file based on the file name included from the
sender.

For example, to set the DH+ to not require a Ctrl+E to logon before any other commands will be accepted:

model=U,0

Model="U" (Login=0/’No’)

To set the DH+ to automatically begin a YMODEM download (data to be stored on the SD card), send:

model=u,DLY

Model="U" (Login=1/’Yes’, DLY on Power Up=”(determined by sender)“)

To set the DH+ to automatically begin a YMODEM upload of file TEST.BIN on power up, send:

model=U,ULY TEST.BIN

Model="U" (Login=1/’Yes’, ULY on Power Up=”TEST.BIN”)

 Page 15 of 74

Terminal Command – Reset to Defaults Format: RESET

Resets to the default settings. This does not affect the Serial Number, Baud Rate, or Model. All
other settings are returned to their factory set values.

Terminal Command – LED Control Format: LEDS

 LEDS=<x>

Turns ON or OFF the LED Display as follows:

 LEDS=0 - LED’s are turned off which saves ~40mA of power draw from the battery.

 Can also use command LEDS=OFF for same result.
 LEDS=1 - LED’s are turned on and operate normally (default).

 Can also use command LEDS=ON for same result.
 LEDS=2 - LED’s are turned on only at very beginning, and then just blink every so

 often until downloading is complete (when they go back on). They will
 also come on to indicate an error. This is a lower battery usage option.
 LEDS=3 - LED’s are a 0-10 scale controlled by LEDLEVEL command.

Terminal Command – LED Level Format: LEDLEVEL=<x>

Sets the LED level from 0-10 when LEDS=3.

Terminal Command – LED Override Format: LEDO=OFF / ALL

 LEDO=<x>,<y>

The LED Override command allows for direct control over any or all of the 10 segment bar graph
LED’s. By default, it is set to “OFF”. If one or more LED’s are directly overridden, they will always
display the value specified.

 LEDO=OFF - Turns off the LED override. All LED’s revert to their non-overridden state.

 LEDO=ALL - Overrides all LED’s and sets them to OFF by default.

 LEDO=<x>,<y> - Overrides LED # <x> (where x is from 1 to 10) to be ON (<y>=1) or OFF

 (<y>=0). Once overridden, the LED stays at the state specified until you
 change it with another LEDO=<x>,<y> or send LEDO=OFF to disable the

 override command.

For example, suppose you wanted LED # 10 to be ON when your batch file is running and OFF
otherwise. You could put the following command at the beginning of the batch file:

 LEDO=10,1

And put this command right before your batch file exits:

 LEDO=10,0

This overrides any other operation that might change LED # 10 and will only be on when the batch
file is running. To return the system to normal operation, send:

 LEDO=OFF

Or send:

 RESET

 Page 16 of 74

Terminal Command – Set Baud Rate Format: BAUD=<bps>

 BOOTBAUD=<bps>

Sets the current baud rate (BAUD) or sets the current baud rate and sets the default rate the DH+
will use when it powers up (BOOTBAUD). Values can range from 300 to 2000000, but note that
the serial port on your computer may not support rates above 115,200. Always use BAUD first to
check system still responds before using BOOTBAUD to make sure you can cycle power and get
the unit back.

Terminal Command – Auto Baud Rate Format: AUTOBAUD=<on/off>

 AUTOBAUD=<mode>

The auto baud command turns on or off auto baud rate detection. By default this is OFF and the
only way the baud rate changes is with the BAUD or BOOTBAUD commands.

To turn auto baud rate detection on, send the command:

 AUTOBAUD=ON

You can also set the auto baud detection mode to one of four values as follows:

 AUTOBAUD=FALLINGEDGE (can be shortened to AUTOBAUD=FA)

 AUTOBAUD=STARTBIT (can be shortened to AUTOBAUD=ST)

 AUTOBAUD=7FFRAME (can be shortened to AUTOBAUD=7F)

 AUTOBAUD=55FRAME (can be shortened to AUTOBAUD=55)

These are four different ways auto baud rate detects changes in the rate. By default, “STARTBIT”
is used and is usually fine for most users. Note that setting the mode automatically turns on auto
baud rate detection if it was off. You can also turn it off with:

 AUTOBAUD=OFF

To set both the On/Off and the mode, combine the two like this:

 AUTOBAUD=ON,STARTBIT

NOTE 1: When converting/adapting from one port to another, such as from RS232 to USB,
enabling auto baud on one channel will automatically adjust it on the other channel. See section 8
for more information on how this works.

NOTE 2: You cannot do auto baud with the logic level serial port (COM2). However, the rate on
this port can be changed when auto-baud is enabled on either the RS232 or USB ports and the
two channels are tied together with the “CONNECT” command. See section 8 for more info.

NOTE 3: Because the DH+ first must determine that the rate has changed, then determine the
new rate from incoming data, it can take 2-5 characters before the auto-baud system identifies the
new rate. Be sure to account for this when using auto baud changes in your system.
If using command mode, often it works to just send the Ctrl+E character until you get a response
at the new rate. However, sometimes it can work faster to send other characters (like a space). If
it doesn’t auto-baud with a Ctrl+E, try sending other characters to get a new rate recognized.

 Page 17 of 74

Terminal Command – Sleep Format: SLEEP=<serial>,<time>

Puts the DH+ into a low power sleep mode that will wake only when it receives a character on its
serial port (if <serial>=”on”), or after <time> number of seconds has passed. <time> can also be
set to a specific “hh:mm:ss” value or the word “top” to wakeup at the top of the next hour.

For example:

 SLEEP - Goes to sleep until a character is received (“on” is assumed).

 SLEEP 60 - Goes to sleep until 60 seconds has elapsed.

 SLEEP on,60 - Goes to sleep for 60 seconds or a character is received.

 SLEEP 00:00:00 - Goes to sleep until midnight (serial is shutoff)

 SLEEP top - Goes to sleep until top of next hour (serial is shutoff). For example,

 if it currently 12:34 it would exit sleep at 13:00.

 SLEEP on,top - Goes to sleep until top of next hour or a serial character is received.

Sleep power draw and how long a typical 9V battery will last depends on a variety of factors.

1) If serial port wakeup is enabled, power draw will be ~22mA.

2) If serial port wakeup is disabled, any of the time based wakeups will draw ~10mA if a serial cable is
connected, or ~8mA if no cable is connected.

3) Estimated battery life with 9V / 550mAhr 22mA = 25 Hours 10mA = 55 Hours
Note that the Data Hog Plus can accept any DC power input from 5V to 16V. You can hook up an
alternate power source to the 9V battery terminals, or to “J5B” on PCB.

NOTE: See section 3.5 for more information on using SLEEP and DEEPSLEEP!

Terminal Command – Set Serial Number Format: SERIALNUM

 SERIALNUM=<val>

Gets or sets the last 9 characters of the Data Hog Plus serial number. The first 10 characters are
set by the factory (DET) before shipping the DH+ and are not changeable by the user.

The factory serial number is set as follows:

 DHPmmyyxxx - Where “mm” is the month of manufacture, “yy” is the year of manufacture,

 and “xxx” is the sequence number (3 digit hexadecimal value).

Setting your own serial number automatically adds a dash (“-“) and then up to 9 characters of your
choosing. For example, to set the last part to “MyDatahog”, you would send:

 SERIALNUM=MyDataHog

Resulting in a new serial number that looks something:

 DHP07200BC-MyDataHog

Note that you can request the Serial Number without first sending the password (if enabled).

However, you cannot change it without sending the password.

 Page 18 of 74

Terminal Command – Memory Status (MEM) Format: MEM

Returns the current SD Card status information, or an error message if no card has been found.
The DH+ responds with something similar to this:

Total Memory: 59GB

Memory Used : 0GB (0%)

 SD Card Name: 46HSG V8.0

Terminal Command – Memory Initialize Format: MEM=INIT!

Re-initializes the SD Card interface. Will return “OK” or “ERR#05” after the initialization.

Terminal Command – Format SD Card Format: FORMAT=YES!

Re-formats the installed SD Card. Will return “OK” or “ERR#05” after formatting to indicate the
status of the SD Card. Note that cards are formatted to exFAT to maximize their broad usage and
large files.

Terminal Command – Change Directory Format: CD

 CD <path>

 CD ..

The DH+ starts by default in the root directory of the SD card, although this can be changed with
the DEFDIR command. Sending CD by itself will return a string indicating the current directory:

cd

Current Directory = "(root)"

To change to a sub-directory send CD <path> where <path> is the name of the directory. For
example:

cd Dudly

Current Directory = "Dudly"

If the directory does not exist, an error will be displayed. To go back up one level, send:

 cd ..

To go back to the root directory regardless of where you currently are, send:

 cd /

<paths> are relative to your current position, unless you put a slash in front of the path name. For
example, suppose you are currently in “/Dudly/Test” and you want to go to “/Boo/Test/2” you
would send:

 cd /boo/test/2

Note that <path>’s are not case sensitive. The DH+ also treats forward slashes (“/”) and
backward slashes (“\”) the same, but will always report directory names using a forward slash.

You can optionally surround path names with quote marks. However, this is rarely necessary
since the DH+ assumes everything after CD is the directory name. Only with the REN and COPY
commands are quote marks usually needed.

 Page 19 of 74

Terminal Command – Directory Listing Format: DIR

 DIR <path>

To list all the files and directories in directory send the DIR command. Sending it without a
specified <path> will list files in the current directory, sending it with a <path> shows files from that
directory. For example:

dir

Directory Listing of "dudly":

2020-07-19 23:15:12 <DIR> test 1

2020-07-19 23:15:14 <DIR> test 2

2020-07-19 23:15:22 <DIR> Test 3

 0 Files 0 bytes

 3 Dirs 15931015168 bytes free

DIR works almost exactly the same as the Command Prompt in Windows. The DH+ starts by
default in the root directory of the SD card, although this can be changed with the DEFDIR
command.

DIR also supports wildcard characters such as:

 DIR *.txt - Displays only files ending in “.txt” from current directory.

Terminal Command – Directory Tree View Format: TREE

 TREE <path>

Displays a tree structure view of all the directories on the SD card. With nothing specified for
<path> it starts at the current directory, otherwise you can use:

 TREE \ - Always display entire directory tree from the root directory.

 TREE “\Foo” - Displays tree view of the Foo directory off the root.

 TREE “..” - Displays a tree view starting in the directory up one level from this one.

 TREE “Foo” - Displays a tree view starting in sub-directory Foo from current directory.

Terminal Command – Make Directory Format: MD <path>

Makes a new directory. For example, to make a new directory from the current directory send:

 md Foo Bar

Or you can send:

 md “Foo Bar”

Another way to always make the directory from the root:

 md “\Foo Bar”

 Page 20 of 74

Terminal Command – Remove Directory Format: RD <path>

Removes a directory and all files and sub-directories in that directory. For example, to remove the
director “Foo Bar” from the root you can send:

 rd “\Foo Bar”

This can be a dangerous command because it can quickly remove a lot of files. Use it carefully!

Terminal Command – Delete File Format: DEL <file>

Deletes a file from the SD card. For example, to remove the file “Dud.txt” from the root you can
send:

 del “\Dud.txt”

To delete a file in the current directory, send:

 del “dud.txt”

You can also use wild cards in the file name. To erase all files ending in “.txt”. send:

 del *.txt

NOTE: For compatibility purposes, you can also use ERASE exactly the same as DEL.

Terminal Command – Rename File or Directory Format: REN <src> <dst>

Renames <src> to <dst>. This command works on files or directories, and can also move a file
from one directory to another.

This command benefits from surrounding the <src> and <dst> with quote marks (helps to identify
them), and is required if the <src> has any spaces in the name.

To rename file “Foo Bar.txt” to “Foo.bin”, send the command:

 ren “Foo Bar.txt” “Foo.bin”

Terminal Command – Copy File or Directory Format: COPY <src> <dst>

Copies <src> to <dst>. This command works on files or directories, and wildcards can be used for
the <src> but not for the <dst>.

This command benefits from surrounding the <src> and <dst> with quote marks (helps to identify
them), and is required if the <src> has any spaces in the name.

To copy the file “Foo Bar.txt” to “Foo.bin”, send the command:

 copy “Foo Bar.txt” “Foo.bin”

 Page 21 of 74

Terminal Command – Type out a File Format: TYPE <file>

 TYPEH <file>

 TABS <size>

Outputs the contents of <file> to the serial port. Output can be aborted by sending a Ctrl+X (0x18)
or Ctrl+Z (0x1A). Renames <src> to <dst>.

TYPE outputs the file as straight text. TYPEH outputs it as a hexadecimal conversion.

By default TYPE outputs tabs as a straight character (0x09). However, you can set it with the
TABS command as follows:

 TABS=0 - Output tab characters as a straight 0x09.

 TABS=<size> - Replace tabs with spaces and set <size> to 1-100 in width.

Terminal Command – Default Directory Format: DEFDIR

 DEFDIR <path>

 Download Directory DLDIR

 DLDIR <path>

 Upload Directory ULDIR

 ULDIR <path>

These commands display or set the default file directory to use on power up (DEFDIR), the
directory to store files in when doing a download (DLDIR), and the default directory to use when
uploading files from the DH+ (ULDIR).

Note that when downloading files using the YMODEM protocol, a file directory can be part of the
name. In this case, the file is always stored as though the DLDIR is the root directory.

In a similar way, when uploading files with YMODEM the ULDIR is treated as the root directory
and is not included in any path name for the file.

The DEFDIR value will automatically be created on any SD Card when it is installed in the DH+.

 Page 22 of 74

Terminal Command – Store Text File Format: STORE <file>

 STOREA <file>

Creates a new file named <file> and beginning storing everything received from the serial port into
the file. File is closed automatically on receipt of Ctrl+X (0x18) or Ctrl+Z (0x1A) or if the cable in
unplugged. If no file name is given, then a file named “yyyy-mm-dd hhmmss.txt” is automatically
created.

STOREA differs from STORE in that it will automatically append new data to the end of <file> if it
exists (otherwise it creates a new file). STORE will always overwrite any existing file with the new
data.

Note that characters are not echoed back during storage. The DH+ assumes this is being done
under software control and does not need to see the actual data being stored. To view the text
after it has been stored, use the TYPE command.

The file directory used to store the file uses the following logic:

1) If the file name starts with a slash (“/”) and then a file name, then it will always go in the root directory.

2) If the file name is just a single slash (STORE /), then a file named in the format “yyyy-mm-dd hhmmss.txt” will
go in the root directory.

3) If the default download directory is blank, or you start the file name with “./”, then the file will be stored in the
current directory plus whatever directory has been specified in <file>.

4) All other situations will store the file in the default download directory plus whatever directory has been
specified in file.

Some examples:

STORE

Creates a “yyyy-mm-dd hhmmss.txt” file in the default download directory.

STORE /

Creates a “yyyy-mm-dd hhmmss.txt” file in the root directory.

STORE ./

Creates a “yyyy-mm-dd hhmmss.txt” file in the current directory.

STORE Dud.txt

Creates file “Dud.txt” in the default download directory.

STORE /Dud.txt

Creates file “Dud.txt” in the root directory.

STORE /MyDir/Dud.txt

Creates file “Dud.txt” in the “/MyDir” directory.

STORE ./Dud.txt

Creates file “Dud.txt” in the current directory.

STORE ./MyDir/Dud.txt

Creates file “Dud.txt” in the sub-directory “MyDir” from the current directory.

STOREA Dud.txt

Appends new text data to file “Dud.txt” in the default download directory.

NOTE: It is recommended to use FASTLOG or TRIGLOG instead of STORE if your capture rate is

230400 baud or higher. This will insure you won’t miss any data (see section 8.3).

 Page 23 of 74

Terminal Command – Download File Format: DL / DL <file>

 DLY / DLY <file>

 DLX <file>

Download transfers a file from a remote system (like a computer) to the Data Hog Plus SD card.
The parameters for <file> are the same as the STORE command (see above).

DL and DLY are identical and start a YMODEM CRC protocol download (either 1K or 128 byte),
including allowing the sending device to specify the <file> (use DL or DLY without a file name to
allow this). The Data Hog Plus implements standard YMODEM with 1K block sizes and a CRC
check.

DLX does an XMODEM download instead. You must specify the file name for XMODEM.

Refer to the following for specific details on how XMODEM and YMODEM works:

 http://textfiles.com/programming/ymodem.txt

 http://web.mit.edu/6.115/www/amulet/xmodem.htm

Once the download is complete the DH+ will send “OK (Download Complete!)”.

NOTE: DLY supports multiple file transfer. The sending device can send as many files as it wants
and the DH+ will store them as received.

Terminal Command – Upload File Format: UL <file>

 ULY <file>

 ULX <file>

Upload sends a file from the SD card on the DH+ to a remote device over the serial port. The
options for <file> are the same as the STORE command (see above).

UL and ULY are identical and start a YMODEM 1K with CRC protocol upload with the file named.
ULX starts a XMODEM 1K transfer with CRC upload.

Refer to the following for specific details on how XMODEM and YMODEM works:

 http://textfiles.com/programming/ymodem.txt

 http://web.mit.edu/6.115/www/amulet/xmodem.htm

Once the upload is complete the DH+ will send “OK (Upload Complete!)”.

NOTE: UL and ULY supports multiple file transfer. Simply specify a wildcard in the file name to
select more than one file to send. For example:

 UL *.* - Sends all files in the directory.

 UL *.txt - Sends all files ending in “.txt”.

http://textfiles.com/programming/ymodem.txt
http://web.mit.edu/6.115/www/amulet/xmodem.htm
http://textfiles.com/programming/ymodem.txt
http://web.mit.edu/6.115/www/amulet/xmodem.htm

 Page 24 of 74

3.5 – Low Power Modes
The DH+ has low power modes that will allow the 9V battery to last up to two weeks by disabling

some functions. The following commands are used to control power:

SLEEP /
IDLE

All functions except the LED’s remain on and active and the unit enters a lower power mode
waiting for either (a) specific amount of time to lapse (such as 60 seconds), (b) the clock reaches
a specific time (such as 8am), (c) an “EXTERNAL TRIGGER” activates (see section 9.3), or (d)
you enable exiting SLEEP/IDLE with the receipt of a character on any of the serial channels.

SLEEP and IDLE are identical except that if you exit from low power mode using a character
received on a serial channel, SLEEP reads that character out and IDLE does not. With IDLE, the
character used to wake the device is available to the next RCV command or in the general buffer,

If SLEEP/IDLE is set to wake from a character received on a serial channel, the unit power draw
is around 9mA if nothing is connected to the RS232 port (or serial wakeup disabled) or 21mA if a
serial cable is plugged into the RS232 port (and serial wakeup enabled). This will result in a
typical 9V battery life of 50 hours (no RS232 cable) or 24 hours (RS232 cable plugged in). Using
the logic level serial, SPI/I2C, or USB port does not increase Data Hog Plus power draw, so you
can expect around 50 hours when using those channels.

DEEPSLEEP

This mode disables the LED’s, RS232, USB, and logic level serial ports and all other serial
communication channels. It can only exit deep sleep after (a) a number of seconds elapses, (b)
the clock reaches a specific date and time, or (c) if the “EXTERNAL TRIGGER” system is
activated (see section 9.3).

DEEPSLEEP is much lower power than SLEEP or IDLE and draws around 1.5mA of current from
the battery. This equals about 350 hours of battery life from a typical 9V battery, or around 2
weeks. DEEPSLEEP is ideal when you want to record activations from any of the EXTERNAL
TRIGGERS or if you want to do something periodically (such as every day, hour, or minute).

Command – Sleep Format: SLEEP=<serial>,<time>

Puts the DH+ into a low power sleep mode that will wake only when it receives a character on its serial port
(if <serial>=”on”), or after <time> number of seconds has passed. <time> can also be set to a specific
“hh:mm:ss” value or the word “top” to wakeup at the top of the next hour.

For example:

 SLEEP - Goes to sleep until a character is received (“on” is assumed).

 SLEEP 60 - Goes to sleep until 60 seconds has elapsed.

 SLEEP on,60 - Goes to sleep for 60 seconds or a character is received.

 SLEEP 00:00:00 - Goes to sleep until midnight (serial is shutoff)

 SLEEP 16:00 - Goes to sleep until 4pm (serial is shutoff, seconds assumed to be “:00”)

 SLEEP top - Goes to sleep until top of next hour (serial is shutoff). For example,

 if it currently 12:34 it would exit sleep at 13:00.

 SLEEP on,top - Goes to sleep until top of next hour or a serial character is received.

Command – Idle Format: IDLE=<serial>,<time>

The IDLE command is identical to the SLEEP command except that if it is set to wake from a serial

character received, that character is not read out and is available to the next command.

For example, suppose you enter:

 IDLE

And the DH+ receives the character ‘R’. That ‘R’ character will become the first character read out by the

next RCV command instead of being discarded.

 Page 25 of 74

Command – Deep Sleep Format: DEEPSLEEP=<time>,<date>

Puts DH+ into a very low power mode that wakes only when (a) specific time/date is reached or specific
number of seconds have elapsed, or (b) an “EXTERNAL TRIGGER” event occurs (see section 9.3).

<time> can be the number of seconds you want to be in DEEPSLEEP or it can be “top” to DEEPSLEEP
until the top of the next hour. It can also be a specific time and/or date. Note that an “EXTERNAL
TRIGGER” will wake the unit up from DEEPSLEEP regardless of the specified time (see section 9.3).

For example:

 DEEPSLEEP 60 - Goes into deep sleep for 60 seconds.

 DEEPSLEEP 00:00:00 - Goes into deep sleep until midnight.

 DEEPSLEEP 00:00 - Same as the above (if no seconds specified, assumes “00”).

 DEEPSLEEP top - Goes to deep sleep until top of next hour (serial is shutoff). For

 example, if it currently 12:34 it would exit sleep at 13:00.

 DEEPSLEEP 16:00 - Goes into deep sleep until 4pm.

 DEEPSLEEP 10/22 - Deep sleep until 00:00 on October 22nd of the current year (if it is not yet

 Oct 22nd) or October 22nd of the next year (if it is already past Oct 22nd).

 DEEPSLEEP 10/22/22 - Deep sleep until October 22nd of 2022.

 DEEPSLEEP 01:00,10/22 - Goes into deep sleep until 1am on October 22nd.

While in DEEPSLEEP the DH+ draws less than 1.5mA of current which makes most 9V batteries last about
2 weeks. This time will be shortened the more time it spends out of DEEPSLEEP.

As an example, suppose you wanted to send the current time out the RS232 port at the top of each hour.
You can create any file and then RUN it, or use a batch file named AUTORUN.BAT located in the root

directory which would run automatically on power up. The batch file could contain these lines:

BAUD1=19200

:MainLoop

SEND1 “Current Time=%H:%N:%S\r\n”

DEEPSLEEP TOP

GOTO MainLoop

This starts out by setting the COM1 (RS232 port) baud rate to 19200bps and then sending the current time.
The DH+ then enters DEEPSLEEP until the top of the next hour. DEEPSLEEP is exited at the top of the
next hour and the program jumps back to “MainLoop” and repeats!

The only way to exit the above program is to pull the SD card out. If you were using a file named
AUTORUN.BAT, you would need to rename this file to anything else before inserting it into the DH+ or it

would automatically start again.

As an alternative, you can also name the file AUTOSTART.BAT. This works exactly the same as

AUTORUN.BAT except that it only executes on initial power up or after a RESTART command. This is

handy because you can pop the SD card out and plug it back in while the unit is powered on and it won’t
automatically restart until you cycle power or use the RESTART command. This lets you use other
commands without cycling power on the unit.

 Page 26 of 74

4 – Programming (Batch File) Protocol

The Data Hog Plus (DH+) supports a complete batch file system which allows control over the unit and

what it is connected to. Simply by placing a file in the root directory of the inserted SD Card, you can

instruct the Data Hog Plus to send out characters or strings, logged received data from the main USB,

RS232 port or the logic level serial and SPI/I2C ports, wait for certain responses, and upload/download

different files depending on the responses received.

This feature also allows users to insert different SD cards for different purposes, and makes the Data Hog

Plus almost infinitely configurable as a portable serial controller, data retriever, and programmer.

All batch files are formatted in standard text file format with one command per line ending in a CR/LF.

Leading spaces or tabs are ignored, and comments can be inserted by starting the line with a semicolon

(“;”), a forward slash (“/”), or the command “REM”. For example:

 REM This is my batch file to change to the \DATA directory

 REM and display the file “HELLO.TXT”.

 CD \DATA

 TYPE “HELLO.TXT”

An identical version of this batch file would be:

 ; This is my batch file to change to the \DATA directory

 ; and type out the file “HELLO.TXT”.

 CD \DATA

 TYPE “HELLO.TXT”

Comments should be used liberally throughout the batch file to make clarification easier later on if you

need to modify the file in any way.

Note that unless a batch file has a GOTO command, it will automatically end after the last command is

executed. You can terminate a batch file before the last command using the EXIT command:

 ; This is my batch file to change to the \DATA directory

 ; and type out the file “HELLO.TXT”.

 CD \DATA

 EXIT

 TYPE “HELLO.TXT”

In this case the Data Hog Plus will change to the \DATA directory, but it won’t type out “HELLO.TXT”

because the EXIT command terminates it immediately.

Batch files can be any length and can do all sorts of

advanced things like:

• Send out characters and wait for responses.

• Start uploads or downloads.

• Run other batch files.

• Run any regular terminal command (not just

batch file commands).

• Use IF/GOTO and LOOP statements to branch

around the batch file and execute different

commands based on certain things happening.

Batch files are a combination of a very simple programming language with a list of file, directory, and data

transmission commands that operate on the SD card and the connected device. See 5A – BATCH FILE

COMMANDS for more information.

NOTE: On power up (or when a new SD card is

inserted) the DHP looks to see if

“AUTOEXEC.BAT” or “AUTORUN.BAT” exists in

the root directory of the SD card. If found, it

automatically runs it. Otherwise, batch files are

only executed in response to the RUN command.

“AUTOSTART.BAT” will also automatically run,

but only on power up or after RESTART

command. This is helpful to stop the program by

unplugging and then re-inserting the SD card.

.

 Page 27 of 74

4.1 – Batch File Commands
The following commands are used with batch files. Note that most of them can be used just like

any Terminal Command described in section 3, but normally are most useful with batch file

execution. A few commands (like GOTO) only relate to batch files.

Batch File Command – Run Batch File Format: RUN <file>

Executes a batch file. By custom, batch files should end in “.BAT” but this is not required by the system.

Note that running a batch file from another batch file is allowed, but when the new batch file ends it does

NOT return to the old file (use the CALL command instead if you want to return).

The standard file name conventions apply like this:

RUN TEST.BAT - Runs the batch file named “TEST.BAT” in the current directory.

RUN \TEST.BAT - Runs the batch file named “TEST.BAT” in the root directory.

RUN FOO\TEST.BAT - Runs the batch file named “TEST.BAT” in the FOO sub-directory from

 the current directory.

NOTE: If the file does not exist exactly as entered, the DH+ will automatically search for a file ending in

“.BAT” with the same name and run that instead. For example, if you sent:

 RUN TEST

If a file named “TEST” does not exist but a file named “TEST.BAT” does, then DH+ will run “TEST.BAT”

Batch File Command – Exit Batch File Format: EXIT

 EXIT <code>

Stops execution of batch file. Optionally, you can exit with a code which can be used in other batch files to

do different things (see the “CALL” command). For example:

CD \DATA

EXIT

CD \

In the above batch file example, the current working directory will stay “\DATA” because it exits out of

running the batch before getting to the last line.

EXIT is especially helpful with the CALL, IF/GOTO, and RUN batch file commands.

Batch File Command – Idle Format: IDLE=<serial>,<time>

The IDLE command is identical to the SLEEP command except that if it is set to wake from a serial

character received, that character is not read out and is available to the next command.

For example, suppose you enter:

 IDLE

And the DH+ receives the character ‘R’. That ‘R’ character will become the first character read out by the

next RCV command instead of being discarded.

 Page 28 of 74

Batch File Command – Call Batch File Format: CALL <file>

Executes a different batch file, similar to RUN, but when the new batch file exits it returns to the current

batch file at the same position. In addition, the %0 variable will be set to the EXIT code.

Consider the following two batch files:

File Main.BAT:

 :Top

 SEND “Type in a string and press Enter: “

 RCV “%s”

 IF %1=”” GOTO Done

 CALL ShowAnswer.BAT

 GOTO Top

 :Done

 SEND “\r\nDONE!\r\n”

File ShowAnswer.BAT:

 SEND “\r\nANSWER=\”%1\”\r\n”

Running Main.BAT will cause the DH+ to ask for a string. When the user types one in and presses Enter, it

then calls “ShowAnswer.BAT” to display the results. If the user types an empty string, it quits.

Note that all variables (%1 through %9) are common to all functions. The %0 variable will always contain

the EXIT code of the last batch file that exited, with a default value of “0” if no other value specified.

You can CALL other batch files from inside of batch files that are themselves CALLed. However, you

cannot go more than ten layers deep.

Batch File Command – Remark (Command) Format: REM …

 ; …

 / …

Simply marks the rest of the line as a comment and is ignored by the Data Hog Plus. For example:

 REM This is my batch file to change

 ; This is my batch file

 / This is my batch file

 // This is my batch file

All of these result in the rest of the line being ignored.

Batch File Command – High Speed Timer Format: TIMER

 TIMER=START/STOP

 TIMER=RESET

The timer is a high-speed timer that can be reset, started, and stopped at any time. To access the current

value, simply send TIMER or use the “%t”, “%T”, “%e”, or “%E” variables inside of SEND.

The timer is useful for various functions and helps in storing timestamps in files.

 Page 29 of 74

Batch File Command – Send Data Out Format: SEND <format>

SEND can be a simple or complex command. In the simplest form, you simply list the characters you want

to output like this: SEND “hello”

And the DH+ would send out the current port: hello

Note that quote marks are not included unless you put a backslash in front of them like this:

 SEND “\”hello\”” And the DH+ would output: “hello”

It is not required to start and end what you are going to send with quotes, but it is generally a good idea to

avoid confusion. Here are some of the other special values that can be included:
Code Explanation
\r Carriage Return (0x0D)
\n New Line (0x0A)
\t Tab Character (0x09)
\” Double quote
\% Percent (cannot just include these because they are used for parameters, see below)
\\ Backslash character
\0 or \1 When sending out SPI/I2C in Master/Manual, \0 sets the CS to “0” and \1 sets it to “1”.
\Gyx Sets a GPIO output (“y” from 1-6) to value “x” (0 or 1). See section 9.

\D or \d Enables DTR on RS232 (\D) or disables it (\d).

\xYY

A single character represented by the hex value of YY. For example, to output an 0xFE byte,
you would use: SEND “\xFE”

You can string multiple characters together too: SEND “\xFE\x7F\xFF\x00”

\pSSS Does not send a character but pauses for SSS number of seconds. For example, to send the
character R, pause for 10 seconds, and then a T, use: SEND “R\p010T”

\mNNN Repeats the previous character NNN times. For example:
 SEND “-\m077\r\n*\m077\r\n”

This would output a dash 78 total times, a new line (CR/LF), then an asterisk 78 times, then a
final new line (CR/LF).

The percent character (%) is special purpose. It allows you to insert previously saved values that are

usually loaded by the RCV command. Here are the % codes:

Code Explanation

%1 - %9

Saved variables from RCV command. For example, the following receives line from the serial
port ended by a Carriage Return (0x0D) and then returns it back followed by a CR\LF:
 RCV “%s”

 SEND “Received: %1\r\n”

When this is run, the DH+ waits to receive a line of text and when it is received (indicated by
getting a Carriage Return), it sends back what it got saying that is stored in %1:
 Received: TEXT

Refer to the batch file examples and the RCV command for more information.
%0 The last EXIT code received (“0” is the default).
%h %n %s

%H %N %S

The current Hour (%h), Minute (%n), and Second (%s)
Same as the above except always as two digits.

%y %m %d

%Y %M %D

The current Year (%y), Month (%m), and Day (%d)
Same as the above except always 4 digit and 2 digit.

%r

%a / %b / %u
%i

Set to a “1” if any data is ready on serial port to be received, or a “0” if not.
%a is the same except it is always on COM1 (RS232), %b is COM2, and %u is USB.
%i is the same except it is for if a character has been received as an SPI/I2C slave.

%t or %T

%e or %E
High Speed Timer as “days hh:mm:ss.msec” (%t) or “days.fractime” (%T).
High Speed Timer as “seconds.msec” (%e) or “hh:mm:ss.msec” (%E).

%c Returns current SPI Chip Select value or 1 or 0 (valid normally in SLAVE SPI/I2C mode).

%G1 to %G6 Returns the current GPIO value (see section 9).

%X1 to %X6

%x1 to %x6

%K1 to %K6

Returns the last external trigger time and date (see section 9.3).
Returns the last external trigger time and date as Unix Epoch Time (see section 9.3).
Returns “1” when external trigger activated (automatically cleared to “0” after read).

%f Returns 1 if RS232 Carrier Detect (DCD) is active, or 0 if it is not active.

%v1/2 & %V1/2

%vt/T & %Vt/T
Returns the current ADC value from ADC #1, ADC #2. Capital ‘V’ is integer, ‘v’ is float.
Use “%vt” for Fareheight and “%vT” for Celcius. Capital ‘V’ is integer, ‘v’ is float.

 Page 30 of 74

Batch File Command – Receive Data Format: RCV <format>

RCV inputs data from the port. If the USB is connected or a RS232 cable is detected when the command

starts, losing that connection during it will automatically abort the RCV.

There are two types of things that can be received – fixed characters and variables. Fixed characters are

specific characters that must be read before moving on. Variables are different kinds of values that can be

specified and then are stored in the %1 through %9 variables.

For example, to simply wait until the characters “GO” are received, use the command: RCV “GO”

The DH+ will wait until “GO” is received before finishing. Note that it has to be ‘G’ then ‘O’ in that order, any

other combination will not match. To wait for “GO” and then one more character of any type, use:

 RCV “GO%c”

The “%c” in this case says to receive a single character. It is automatically saved in the %1 variable

because it is the first thing being received. To do the same thing with two characters:

 RCV “GO%c%c”

Now %1 will equal the first character received after “GO”, and %2 will equal the second character.

Alternately, you can use:

 RCV “GO%2c”

Both characters that are then stored in %1 (one after the other). See the IF/GOTO command to perform

checks on the variables and change the batch file flow based on what is received.

Regular characters have special codes for certain characters (like the SEND command):

Code Explanation
\r Carriage Return (0x0D)
\n New Line (0x0A)
\t Tab Character (0x09)
\” Double quote
\% Percent (cannot just include these because they are used for parameters, see above)
\\ Backslash character

\xYY
A single character represented by the hex value of YY. For example, to wait to receive a
0xFE, you would say: RCV “\xFE”

\mNNN Repeats previous character NNN times.
\0 or \1 When receiving from SPI/I2C in Master/Manual, \0 sets the CS to “0” and \1 sets it to “1”.
\Gyx Sets a GPIO output (“y” from 1-6) to value “x” (0 or 1). See section 9.

\D or \d Enables DTR on RS232 (\D) or disables it (\d).

Format of the “%” commands:

Code Explanation
%c

%<num>c

Single character (Tab, punctuation, or upper/lower case letter or number).
Multiple characters specified by <num>. For example, “%5c” loads five characters.

%b

%<num>b

Single byte of any value.
Multiple bytes specified by <num>. For example, “%5b” loads five bytes.

%B

%2B

%Y

%2Y

Same as “%b” above except it is stored as a decimal number in variable.
Stores a word in memory (High-Low) as a decimal number in variable.
Same as “%b” above except it is stored as a hex number in variable.
Stores a word in memory (High-Low) as a hex number in variable.

%s
String terminated by a CR (0x0D), LF (0x0A), Break (0x03), or Abort (0x18).
Note that the character that terminates the string is not included in the result.

%S Same as “%s” except response must be longer than zero length.
%i

%<num>i

Integer terminated by a comma, CR (0x0D), LF (0x0A), Break (0x03), or Abort (0x18).
Receives a specific number of integer characters.

%f

%<num>f

Floating point terminated by comma, CR (0x0D), LF (0x0A), Break (0x03), Abort (0x18).
Receives a specific number of floating point characters.

%x

%<num>x

Hex number terminated by comma, CR (0x0D), LF (0x0A), Break (0x03), or Abort (0x18).
Receives a specific number of hex characters.

 Page 31 of 74

Batch File Command – Goto Label Format: GOTO <label>

The GOTO command jumps to a new line in the batch file. This line can be either before or after the

GOTO command, and is identified by a unique <label> identifier that starts with a colon (“:”). For example:

CD \

GOTO NEWLABEL

CD \NEWDATA

EXIT

:NEWLABEL

CD \OLDDATA

This batch file jumps around the “CD \NEWDATA” to “NEWLABEL” and then runs “CD \OLDDATA”. GOTO is

especially useful when combined with IF, CALL, and RUN commands.

Batch File Command – If Then Goto Format: IF <condition> GOTO <label>

The IF command tests the results of previously stored values to see if they match specified conditions. If

they do, then the batch file will branch to the label specified after the GOTO.

This command can be hard for those new to programming to understand, but it is fairly simple. Consider

the following batch file:

:Top

SEND “Type 0 or 1: “

RCV “%c”

IF %1 = ”0” GOTO GotZero

IF %1 = ”1” GOTO GotOne

SEND “\r\nERROR: Did not type 0 or 1!\r\n”

GOTO Top

:GotZero

SEND “\r\nGOT A ZERO!\r\n”

EXIT

:GotOne

SEND “\r\nGOT A ONE!\r\n”

This code starts out by sending “Type 0 or 1: “. It then waits for a character to be received back. Once

that is received, it checks to see if it is a “0” and jumps to the line after the “GotZero” label if it is. If it is a

“1”, it jumps to the line after the “GotOne” label. If it is neither of these, it sends an error message and then

retries!

You can see how the “RCV %c” is used to receive the character and it is automatically stored in the %1

variable. This %1 value is what the IF command uses to check against to see what was actually received.

IF supports the following comparisons:

 = (Equals) < (Less Than) >= (Greater Than or Equals)

 != (Not Equals) > (Greater Than) <= (Less Than or Equals)

 .x (Bit “x” is of variable is equal to 0 or 1)

For example:

 IF %4 >= “12” GOTO MyLabel

If %4 is greater than or equal to 12, it jumps to MyLabel. You can also put numbers after the comparison

(like IF %1 = 1 GOTO MyLabel) or hex numbers (like IF %3 > 0x32 GOTO MyLabel).

 Page 32 of 74

Batch File Command – Loop Goto Format: LOOP <count> GOTO <label>

The LOOP/GOTO command allows the batch file to repeat a loop a specified number of times. Consider

the following batch file:

 :Top

 SEND “Here!\r\n”

 LOOP 10 GOTO Top

This would send out the string “Here!” ten times. You can also use a % variable for the count:

 SEND “How many times? “

 RCV “%i”

 SEND “\r\n”

 :Top

 SEND “Here!\r\n”

 LOOP %1 GOTO Top

The RCV command will store an integer in %1, which will control how many times it loops and sends the

“Here!” line.

NOTE: A loop count of one or zero results in no action. The DH+ assumes the first time through you have

done one loop. In addition, don’t use nested LOOPs inside of CALLs. The DH+ only supports one LOOP

at a time, and a loop inside a CALL may result in the main batch file LOOP being repeated infinitely.

Batch File Command – Restart Data Hog Plus Format: RESTART

 RESTART=<sec>

 RESTART=<time>

 RESTART=TOP

Restarts the Data Hog Plus. This command is identical to switching the power switch off and then on

again.

Optionally include the number of seconds you want to wait or a specific time you want to restart at. During

this period the Data Hog Plus ignores everything and won’t respond again until this time has passed.

For example:

 RESTART - Immediately restarts

 RESTART 60 - Goes to sleep and restarts after 60 seconds.

 RESTART 00:00:00 - Goes to sleep and restarts at midnight.

 RESTART 12:00 - Goes to sleep and restarts at noon (seconds are assumed to be “00”).

 RESTART top - Goes to sleep and restarts at top of next hour. For example, if it currently 12:34

 it would exit and restart at 13:00.

 Page 33 of 74

Batch File Command – File Open Format: OPEN <file>

 OPENN <file>

 OPENA <file>

Opens an existing file or creates a new file named <file> and begins reading everything from it
when the INPUT command is used or storing everything sent by the OUTPUT command to it.

OPENN creates a new file, and OPENA creates a new file if none exists or appends new data to
the end of any existing file. OPEN is used to read data out of existing files.

The file directory used has the following logic:

1) If the file name starts with a slash (“/”) and then a file name, then it will always go in the root directory.

2) If the file name is just a single slash, then a file “yyyy-mm-dd hhmmss.txt” will go in the root directory.

3) If the default download directory is blank, or you start the file name with “./”, then the file will be stored in the
current directory plus whatever directory has been specified in <file>.

4) All other situations will store the file in the default download directory plus whatever directory has been
specified in file.

Some examples:

OPENN

Creates a “yyyy-mm-dd hhmmss.txt” file in the default download directory.

OPENN /

Creates a “yyyy-mm-dd hhmmss.txt” file in the root directory.

OPENN ./

Creates a “yyyy-mm-dd hhmmss.txt” file in the current directory.

OPENA Dud.txt

Creates file “Dud.txt” in the default download directory if it doesn’t exist, otherwise adds to this file.

OPENA /Dud.txt

Creates file “Dud.txt” in the root directory if it doesn’t exist, otherwise adds to this file.

OPEN /MyDir/Dud.txt

Opens the existing file “Dud.txt” in the “/MyDir” directory for the INPUT command.

Batch File Command – File Close Format: CLOSE

Closes any file that has been opened with the OPEN, OPENN, or OPENA command. This command is

optional – the DH+ automatically closes the open file if another file is opened or the batch file exits.

Batch File Command – Input from File Format: INPUT <text>

The INPUT command is just like the RCV command, except it reads data from an existing file that has

been opened with the OPEN command. The format of <text> is identical to the RCV command except the

characters are read out from the file instead of from the serial port.

Note that any INPUT command automatically ends if the end of the file is reached and an error message is

shown.

 Page 34 of 74

Batch File Command – Output to File Format: OUTPUT <text>

The OUTPUT command sends the data specified by <text> to the file previously opened with the OPENN

or OPENA command. The format of <text> is identical to that described by the RCV command (see

above). For example:

 OPENN “MyFile.txt”

 OUTPUT “This is a line of text!\r\n”

 CLOSE

At the end of this sequence, the file “MyFile.txt” will contain “This is a line of text!” followed by a CR/LF.

You can include % variables in the output as well as any backslash code.

If you wanted to append to an existing file, you would use:

 OPENA “MyFile.txt”

 OUTPUT “This is a line of text!\r\n”

 CLOSE

In this example, every time the sequence is run another “This is a line of text!” is added to the file.

Batch File Command – Seek File Location Format: SEEKSTART

 SEEKEND

 SEEK <position>

 SEEKEND <position>

 LINESEEK <line>

When a file has been opened the seek command lets you move the file position. When the file position has

been moved, the next INPUT or OUTPUT from or to that file will happen from the new position. For byte

specific moves, use the following commands:

SEEKSTART - Jumps to the beginning of the file.

SEEKEND - Jumps to the end of the file.

SEEKEND x - Jumps to the end of the file minus the number of characters specified by “x”.

SEEK x - Jumps to the byte location in file specified by “x”.

If the file is a standard text style of file, with ending CR characters on each line, you can use:

 LINESEEK <linenum> - Jumps to a specific line number with one (LINESEEK 1) being the very

 beginning of the file.

 Page 35 of 74

Batch File Command – % Set Variable Format: %x = <text>

As previously described, the Data Hog Plus has nine main variables for use during batch file operation

numbered %1 to %9. In addition, %0 represents the value of the last EXIT code which is used in

combination with the CALL function.

Most of the time % variables are set with the RCV and INPUT commands. These read data out of the one

of the communication ports or from a file, respectively. For example:

 RCV “%s”

This will read a string of characters out of the communication port terminated with a CR and store the result

in the %1 variable. If you used instead something like:

 RCV “%c%s”

Then the first character would be stored in the %1 variable and then a string terminated by a CR would be

stored in the %2 variable.

Another option is to assign directly to a variable a different string or variable. For example:

 SEND “Type in string and press Enter: “

 RCV “%s”

 %2 = “Got \”%1\”!\r\n”

 SEND “\r\n%2”

This would get a string and store it in %1. It then assigns to the %2 variable the word “Got “, a quote,

whatever was received by the RCV command, and then a trailing quote, exclamation, and CR\LF. It then

sends that new %2 value back out.

Assigning values to variables is especially useful if you want to preserve time stamps or other values that

might change between accessing them.

 Page 36 of 74

4.2 – Batch File Examples
Refer to the “SAMPLE BATCH FILES” sub-directory on the SD card that came with the Data Hog Plus.

This directory contains several sub-directories with different kinds of example batch files.

Other examples may be present, but the following is a brief description:

Send Time Once Per Hour

Will send the time when it first runs, and then send it again at the top of each hour.

Serial Data Logger (Text)

When DH+ powers up, it immediately opens a new text file with a name based on the current date and

time. All text received is stored in this file. The file is closed if the DH+ receives a Ctrl+X, and then

another new text file is opened with a new date and time.

This allows you to use the DH+ to simply record all text data that it receives.

Serial Data Logger (YModem)

When DH+ powers up, it immediately starts a YModem download. At the end of the download, it will

start another YModem download.

This allows you to use the DH+ to receive files via YModem continuously from whatever it is connected

to. Since YModem has the file name in the header, the device it is connected to can set the file name

to be saved into.

Serial Data Logger (Text or YModem)

Similar to the previous two examples except it first sends out a message saying “Send 0 for Text or 1

for YModem”. Once it receives one of those two characters, it starts either a Text or YModem

download. When finished, it re-asks “Send 0 for Text or 1 for YModem”.

Stop Watch

Sends the message “Stop Watch (SPACE to Start/Stop):”. When it receives a SPACE or a CR, it starts

the stop watch and sends out the hours, minutes, and seconds each second. Send another SPACE or

CR to stop the timer.

Send Ctrl+X to abort and exit the Stop Watch example.

Stop Watch Logger

Same as Stop Watch except it also opens a text file and stores the stop watch times to a file named

“STOPWATCH.TXT”. New data is appended to existing data.

Send Ctrl+X to abort and exit the Stop Watch example.

Data Time Stamp

Opens a new file based on the current date and time. Any character that is received is immediately

stored in the file along with an exact time stamp of that character.

If a Ctrl+X is received, the file is closed and a new file is opened with the current date time. If a Ctrl+Z

is received the batch file terminates.

Refer to the “SAMPLE BATCH FILES” sub-directory for more information and other examples. The DH+ is

very customizable for your particular system needs!

 Page 37 of 74

5 – Updating Data Hog Plus Firmware

The Data Hog Plus firmware can be updated fairly easily. Diamond Edge Technology provides updates

periodically (refer to www.detllc.com) for firmware labeled like this: DHP_Vxxxa.HEX

The “xxx” will be the version number and the “a” refers to any customization for specific customers. You

can determine what version you are currently running by:

1) Open a terminal window on your computer set to the baud rate of the DHP and the COM port you have

connected your USB cable or RS232 cable with NULL MODEM adapter to.

2) Send Ctrl+E to get the sign-on string like this:

 DHP#200a 03/03/21

3) This shows the currently connected DHP is V2.00a.

4) It is a good idea to increase speed to 921.6kbps for firmware updates. Send the command:
 BAUD=912600

And then change the terminal baud before starting the update. NOTE: You will have to switch back to 19200

baud after the update because the Data Hog Plus will revert to its original setting after restarting.

To update the firmware on the Data Hog Plus, send the following command: NF=YES!

The DHP will respond with a YMODEM Upload message. Start your YMODEM Upload of the new version

of firmware. Once the upload is complete the DHP will automatically restart.

WARNING: You will “brick” your Data Hog Plus and void the warranty if you upload anything to it other

than approved firmware from Diamond Edge. It is better You should also be sure to plug in your USB

cable or have a fresh 9V battery installed before starting the process, and there is no chance that your

computer will lose power during the transfer.

5.1 – D-Terminal Program
Diamond Edge provides a free program named “D-Terminal” to communicate to and control the Data Hog

Plus. This program is included on the SD card that comes with the DHP and is also available as free

download from www.detllc.com from the Downloads page.

D-Terminal is a complete terminal emulator plus has special features for the Data Hog Plus. Simply install

and run D-Terminal, connect the DHP to your computer, select the “Port” the Data Hog Plus is connected

to, and click the “Data Hog Plus” tab at the bottom of the screen. All files and directories are shown and

you can edit, view, copy, cut, and paste files between your computer and the DHP easily.

In addition, an “Update” button at the top of the DHP link page allows you to quickly update new firmware

to the Data Hog. It is highly recommended to keep your DHP updated to the most current release. Note

that this button only appears if a new version of firmware is available.

To access the “Update” function, do the following:

1) Install D-Terminal (if you haven’t already).

2) Copy any firmware update files to the directory:
 C:\Program Files\DiamondEdge\DTerminal\Hexfiles

3) Run D-Terminal

4) Click “Port” and select the serial port the Data Hog is connected to (usually the USB or RS232 port, USB

connection is recommended for updates).

5) Press <Enter> or Ctrl+E to make sure you get the sign-on string (“DHP#xxx …”). This makes sure you are

talking to the unit. NOTE: You may want to remove the SD card if you are running batch files because the

unit won’t respond to Ctrl+E while it is running a program.

6) At the bottom of the screen is a tab named “Data Hog Plus” – click it.

7) The program will link to the unit. After a few seconds the “Update” button will appear if a new version is

available in the directory specified above. Click the button and follow instructions!

That’s it. The update is automatic and will let you know when finished.

http://www.detllc.com/
http://www.detllc.com/

 Page 38 of 74

6 – USB, RS232, and Logic Level Serial Ports

These three communication channels (USB, RS232, and logic level serial) support the complete command

line interface described in the previous sections. You can send almost any command from one of these

ports and the DH+ will respond back out that same port.

For example, if you send the DIR command from the USB port, the DH+ will send the current directory

back out the USB connection. This same DIR command from RS232 or logic level serial ports will similarly

respond back to the same channel.

However, many commands allow you to specify where they will respond by appending a port code to the

end of the command as follows:

 1 - RS232 Port I - I2C Port

 2 - Logic Level Serial S - SPI Port

 U - USB Port

For example, from any port if you send the DIRU command (instead of just DIR) the directory will be sent

out the USB port instead of back to the channel it received the command from. This is especially useful

inside of batch files to specify specific channels for specific commands.

Commands that support RS232 (1), Logic Level Serial (2), USB (U), I2C (I), and SPI (S) channel specifiers

in place of the “x” below:

• SENDx <text> - Sends out a specific string. This is normally used in combination with a Batch file.

• RCVx <text> - Waits for a specific character or string to be sent back.

Commands that support RS232 (1), Logic Level Serial (2), and USB (U) channel specifiers in place of the

“x” below:

 File & Directory Specific Commands:

• TYPEx <file> - Outputs a text file.

• TYPEHx <file> - Outputs a file as hexadecimal values.

• DIRx/DIRx <path> - Displays current file directory or the files in the sub-directory <path>

• TREEx - Displays a tree view of all existing directories from current directory.

Upload/Download Commands:

• DLx / DLYx - Starts a YModem download (stores data on Data Hog Plus). You can optionally

 specify a <path> and/or <file> name, even though YModem supports this itself.

• DLXx <file> - Starts XModem download (stores data on Data Hog Plus) into <file>.

• ULx/ULYx <file> - Starts YModem upload (data from Data Hog Plus to external device) of <file(s)>.

• ULYx <file> - Starts XModem upload (data from Data Hog Plus to external device) or <file(s)>.

• STOREx <file> - Starts a text file download into file named <file>. If <file> is blank, will create a

STOREAx <file> a file named “yyyy-mm-dd hhmmss.txt”

• FASTLOGx <file> - Same as STORE with a higher priority (see section 8.3).

• TRIGLOGx <file> - Same as FASTLOG but can exit with a GPIO TRIGGER (see section 8.3).

System Commands:

• BAUDx - Changes the current baud rate (will revert to original baud on power up)

BOOTBAUDx - Changes the current baud rate and sets the default baud rate on power up.

• COMx - Enables or disables commands to be sent/received from COMx

Commands that support RS232 (1) or USB (U) channel specifiers in place of the “x” below:

• AUTOBAUDx - Enables or disables auto baud rate setting from COM1 (RS232) or USB (COMU)

For example:

 DIR1 - Sends current directory to RS232 Port

 DIR2 \DUD - Sends the “\DUD” directory to the logic level serial port.

 Page 39 of 74

System Command – COMx Format: COMx=<param>

This command enables or disables commands being sent/received from a specific COM port. For

example:

 COM2=DISABLE - Turns off COM2 (logic level serial) as a source of commands.

 COM2=0 - Same as above.

 COM1=ENABLE - Turns on COM1 (RS232) as a source of commands.

 COM1=1 - Same as above.

 COMU=ENABLE - Turns on COMU (USB Port) as a source of commands.

 COMU=1 - Same as above.

By default both COM ports and USB port work for commands and enquires. However, if using the Data

Hog to control other devices on COM1, COM2, or USB port, it can sometimes be helpful to disable

commands from the port.

The logic level serial (COM2) has two additional commands:

 COM2=INVERT - Inverts the logic on the RXD/TXD pins.

 COM2=STANDARD - Keeps the RXD/TXD pins at the standard logic level.

6.1 – Logic Level Serial Port
The logic level serial port has a Transmit (TXD) and Receive (RXD) line available on the DH+ side

port. These two lines, along with a Ground (GND) connection allow you to connect the DH+ to

any logic level serial device:

The rightmost pin labeled “RXD” is the receive input and the

second from right labeled “TXD” is the transmit output. These

operate at +3.3V and support speeds up to 2Mbps.

The logic level port is named “Serial 2” for all commands.

To use the port, connect the “GND” (Ground) pin to the second systems ground pin, connect the

“TXD” (Transmit) pin to the second systems RXD (Receive) pin, and connect the “RXD” pin to the

second systems TXD (Transmit) pin.

 Page 40 of 74

System Command – Pass Through Format: PASSTHROUGH

 PASSTHROUGH=<x>

NOTE: The “PASSTHROUGH” command is a holdover from a previous firmware release. It is recommended to

instead use the newer “CONNECT” command (see section 8) for linking ports.

Use pass through to enable a transparent passthrough of data between COM1 (RS232) and COM2 (logic

level serial). When this mode is active, anything received on COM1 will be sent to COM2 and vice-a-versa.

By default, the mode is exited whenever a 0x18 character is received from either channel.

It is important to set the baud rates of each port before starting passthrough. This is done with the

BAUD1=<baud> and BAUD2=<baud> commands. Note that each port has a 10K buffer which cannot be

exceeded, so if the baud rates are very different care must be taken to insure the buffers are not overrun.

PASSTHROUGH=<x> is the same except you can specify the character to be used to exit the passthrough

mode. For example:

 PASSTHROUGH=3

Would use a Ctrl+C (0x03) to exit the passthrough mode. Send:

 PASSTHROUGH=-1

To disable exiting the passthrough mode (must cycle power to exit).

System Command – Pass Through with Log Format: PASSTHROUGHLOG

 PASSTHROUGHLOG=<x>

NOTE: The “PASSTHROUGHLOG” command is a holdover from a previous firmware release. It is recommended to

instead use the newer “CONNECT” command (see section 8) for linking ports.

Use pass through to enable a transparent passthrough of data between COM1 (RS232) and COM2 (Logic

Level Serial). When this mode is active, anything received on COM1 will be sent to COM2 and vice-a-

versa. By default, the mode is exited whenever a 0x18 character is received from either channel.

 Page 41 of 74

7 – SPI and I2C Ports

The SPI and I2C ports allow advanced users to control specialized serial channels. Under most

circumstances, the USB, RS232, logic level serial, or a batch file is used to control the SPI or I2C

port.

7.1 – SPI Port

Four of the pins on the Data Hog Plus side connector serve as a direct 3 or 4 wire “SPI” port. SPI

is a universal synchronous style interface that can connect to a variety of different devices. This

document does not describe SPI in detail (refer to other sources for this information), but the way

SPI is used with the Data Hog Plus and a connected device is described below.

The Data Hog Plus SPI port uses four possible lines:

MISO - Master Input/Slave Output

MOSI - Master Output/Slave Input

CLK - Clock

CS - Chip Select

The SPI port can be configured as either a “slave” or “master” which affects how the above lines

function. Under most circumstances the Data Hog Plus operates as the “Master” device and

sends data to a connected SPI “Slave”.

SPI MASTER:

In “Master” mode the Data Hog Plus is controlling the communication to a SPI “Slave”. This is the

most common configuration and sets the pins as follows:

 Full Duplex:

Pin Input or Output Function

MISO Input to DH+ Master Input / Slave Output

MOSI Output from DH+ Master Output / Slave Input

CLK Output from DH+ Clock Output

CS Output from DH+ Chip Select (normally Active Low)

Half Duplex:

Pin Input or Output Function

MOSI
Master Transmit Output from DH+

Master Receive Input to DH+
Output when Transmitting, Input when Receiving.

CLK Output from DH+ Clock Output

CS Output from DH+ Chip Select (normally Active Low)

While in Master mode, you can send out the SPI port using the SENDS command and receive

data in using the RCVS command. If the chip select line is set to manual, use the SPICS

command to set it HIGH (1) or LOW (0) as needed. You can also use the \0 and \1 special

codes embedded in the strings specified for sending and receiving.

 Page 42 of 74

SPI SLAVE:

In “Slave” mode the Data Hog Plus is controlled by an external master. Because it cannot control

when data is sent or received, it must pre-set what it is going to return in response to a read

request. controlling the communication to a SPI “Slave”. This is the most common configuration

and sets the pins as follows:

 Full Duplex:

Pin Input or Output Function

MISO Output from DH+ Master Input / Slave Output

MOSI Input to DH+ Master Output / Slave Input

CLK Input to DH+ Clock Input

CS Input to DH+ Chip Select (normally Active Low)

Half Duplex:

Pin Input or Output Function

MOSI
Slave Transmit Output from DH+

Slave Receive Input to DH+
Output when Transmitting, Input when Receiving.

CLK Input to DH+ Clock Input

CS Input to DH+ Chip Select (normally Active Low)

Use the SENDS command to load characters to be sent to the master when they are next

requested. The system buffers the characters until they are clocked out by the master.

Use RCVS to retrieve characters sent to the Data Hog Plus from the master. It will wait until

characters are received before returning.

SPI Specific Commands

• SPI - Enables or disables the SPI port and sets its type and speed.

• SPICS - Turns on or off the SPI Chip Select line when in Master mode.

• SENDS <text> - Sends out a specific string.

• RCVS <text> - Reads in a specific string or set of values from SPI port.

 Page 43 of 74

System Command – SPI Format: SPI

 SPI=CLEAR / TXCLEAR / RXCLEAR

 SPI=<param>

This command enables or disables the SPI port and sets its speed and mode. Note that enabling the SPI

port automatically disables the I2C port (and vice-a-versa). Send:

 SPI - By itself to see the current settings

 SPI=CLEAR - Clears any pending receives and transmits.

 SPI=RXCLEAR - Clears any pending receives.

 SPI=TXCLEAR - Clears any pending transmits.

Using SPI=<param> has the following values:

Parameter Values Explanation
<enable> Enable/1, Disable/0 Turns on or off the SPI port.
<mode> Master or Slave Sets the SPI port to Master or Slave mode.

<clock> 0 to 7

Sets the SPI clock speed (only applies to Master mode) to one of the
following values:
 0 – 24Mhz 1 – 12Mhz 2 – 6Mhz 3 – 3Mhz
 4 – 1.5Mhz 5 – 750Khz 6 – 375Khz 7 – 187.5Khz

<cpol> 1 or 0 Clock Polarity (1 = High, 0 = Low)
<cpha> 1 or 0 Clock Phase (1 = 2 edge, 0 = 1 edge)

<bitorder> MSB or LSB
Bit order of either Most Significant Bit first (MSB) or Least Significant
Bit First (LSB)

<cs mode> NSS or MAN

Sets the Chip Select Mode in Master mode:
 NSS - Automatic (toggles with each byte)
 MAN - Changes only on “SPICS” command or through the
 special \0 and \1 parameters in SENDS.
Sets the Chip Select Mode in Slave mode:
 NSS - Automatic (toggles with each byte)
 MAN - Changes only on “SPICS” command or through the
 special \0 and \1 parameters in SENDS.

<duplex> Full or Half Selects either Full Duplex (4 Line SPI) or Half Duplex (3 Line SPI)

System Command – SPICS Format: SPICS=1 or 0

Sets the SPI CS (Chip Select) line High or Low. This is used when in Master mode and the CS is set to

“MAN” (Manual).

In “Slave” mode, sending just SPICS will return the current Chip Select line state.

You can also check and change the CS line during RCV or SEND using the %c, \0, and \1 command codes

embedded in strings.

 Page 44 of 74

7.2 – I2C Port
The DH+ can also implement an I2C port. This uses some of the same pins as the SPI port as

described below:

SDA (labeled MISO) - Serial Data (bi-directional)

SCK (labeled CLK) - Serial Clock (input when Slave, output when Master)

The pins labeled MOSI and CS are not used in I2C mode.

The I2C port can be configured as either a “slave” or “master” which affects how the above lines

function. Under most circumstances the Data Hog Plus operates as the “Master” device and

controls the clock to a I2C “Slave”.

Use the SENDI command to load characters to be sent to the slave or master and use RCVI to

retrieve characters sent to the Data Hog Plus from a slave or master.

I2C Specific Commands

• I2C - Enables or disables the I2C port and sets its type and speed.

• SENDI <text> - Sends out a specific string.

• RCVI <text> - Reads in a specific string or set of values from I2C port.

System Command – I2C Format: I2C

 I2C=CLEAR / TXCLEAR / RXCLEAR

 I2C=<param>

This command enables or disables the I2C port and sets its speed and mode. Note that enabling the I2C

port automatically disables the SPI port (and vice-a-versa). Send:

 I2C - By itself to see the current settings

 I2C=CLEAR - Clears any pending receives and transmits.

 I2C=RXCLEAR - Clears any pending receives.

 I2C=TXCLEAR - Clears any pending transmits.

Using I2C=<param> has the following values:

Parameter Values Explanation
<enable> Enable/1, Disable/0 Turns on or off the I2C port.
<mode> Master or Slave Sets the I2C port to Master or Slave mode.

<clock> 0, 1, 2

Sets the SPI clock speed to:
 0 – Standard (100Khz)
 1 – Fast (400Khz)
 2 – Fast Plus (1Mhz)

<address> Slave Address
Sets the address of the slave to communicate with or the Data Hog
Plus’s Slave Address (when in “Slave” mode)

<add length> 7 or 10 Sets the slave address length to 7bit or 10bit
<analog

filter>
1 or 0 Turns on or off the Analog Filter.

 Page 45 of 74

8 – Converting/Adapting, Logging, & Protocol Analyzing

One of the most common uses of the Data Hog Plus is to convert from one type of serial channel

to another. For example, convert from USB to RS232 or convert from USB to logic level serial.

The following sections give complete details on how to enable this functionality.

Note that configuring the Data Hog Plus to act as a converter is done by either using the SD Card

and a batch file (see section 4) or by sending it commands through the USB, RS232, or logic level

serial channel (see section 3 and section 6). Before attempting to do this, it is recommended all

users learn to do the following first:

1) Connect the Data Hog Plus to your computer using the USB or RS232 port.

2) Power it on.

3) Install and run the “D-Terminal” program (or use any other terminal application).

4) Select the port the DH+ is enumerated as (if using USB) or the serial port it is connected to

(if using the RS232).

5) Set the baud rate to 19200bps.

6) Send a CTRL+E to the Data Hog Plus to get a response that starts with “DHP#...”

You are now in Command Mode and can configure the DH+. It is highly recommended you

familiarize yourself with the process of using the terminal command interface before setting the

DH+ up as a converter, adapter, data logger, and/or protocol analyzer.

8.1 – Converting/Adapting

The DHP+ supports several methods of converting one type of serial data to another. For
example, converting the USB data to RS232 or logic level serial. The simplest method is to simply
use the CONNECT command to tie two or more channels together like this:

 CONNECT=COMU,COM1

From this point on, anything received on the USB channel will be sent to the RS232 port and vice-
a-versa. This connection will stay active even if power is cycled, SD card is removed, or the
cables are unplugged and reconnected. The DH+ will not respond to any further commands on
these channels until the connection is broken by:

1) The “escape sequence” is received from any channel. This is normally three special
characters sent within one second with a one second break before and after. The DH+ will
stay in command mode after this until it receives another CONNECT command, a Ctrl+A is

received, or the connection is disabled.

2) Power is cycled with a SD card inserted that has a AUTORUN.BAT file in the root directory
containing a command which turns off or changes the connection like this:
 CONNECT=NONE

3) CONNECT=NONE is sent from a channel not part of the connection. For example, if COM1

and the USB are connected, sending CONNECT=NONE from the Logic Level serial will break

the connection for all channels.

The CONNECT command also supports multiple connections like this:

 CONNECT=COMU,COM1,COM2

All three main channels are now connected together. Anything received from any channel is sent
out to both of the other channels.

 Page 46 of 74

System Command – Connect Format: CONNECT=NONE / OFF / <chan>

 CONNECT=LOG / LOGHTML / PLAINLOG

 CONNECT=LOGx / LOGHTMLx

 CONNECT=NOLOG

 CONNECT=’c’ / 0xZZ

The CONNECT command ties two or three channels together. For example:

 CONNECT=COM1,COMU - Ties the USB and RS232 ports together.

 CONNECT=COM1,COM2 - Ties the RS232 and TTL Logic Level Serial together.

 CONNECT=COM1,COM2,COMU - Ties all three channels together.

When a channel is connected, anything received on it is automatically sent to the other channels. In

addition, if AUTOBAUD is enabled, a baud rate change on one channel will automatically change it on the

other channels.

A protocol analyzing log may also be enabled through the following commands:

 CONNECT=LOG - Turns on the LOG file. This will be a file named:

 “yyyy-mm-dd hhmmsss.txt”

 And placed in the default DATA sub-directory.

 CONNECT=LOGHTML - Same as above except the format is in HTML with different colors

 for each channel.

 CONNECT=NOLOG - Turns off LOG file creation.

Once CONNECT is active no further commands are accepted from either channel until either (a) an SD

card is inserted with a batch file that disables the connection or (b) the DH+ receives three escape

characters within two seconds with at least a second on either side. By default, the escape character is as

follows (differs for each port):

 USB (COMU) - Plus (“+”)

 RS232 (COM1) - Minus (“-“)

 Logic Level Serial (COM2) - Ampersand (“&”)

A different character is used for each port to prevent echoing of characters from tripping the escape

sequence from the wrong port.

 CONNECT=x,’c’ - Set “c” to the character you want to use as the escape character. “x” is

 set to “U”, “1”, or “2” for the port’s break character you want to change.

 CONNECT=x,0xZZ - Set “ZZ” to the two digit hexadecimal value you want to use as the

 escape character. For example, CONNECT=U,0x42 would set the

 USB break character to a ‘B’.

When the escape sequence is received, the DH+ will send:

 (escape ... Ctrl+A to resume)

Send a Ctrl+E to log onto Data Hog Plus. Send a Ctrl+A to exit the escape and return to the CONNECT

with this message:

 (connect resumed)

BAR GRAPH DURING CONNECT: While the connect mode is active, the bar graph will display activity on

each channel using the last four LED’s. LED 7 will always be off, LED 8 blinks when COM1 receives data,

LED 9 blinks when COM2 receives data, and LED 10 blinks when COMU (USB) receives data.

 Page 47 of 74

8.2 – Data Logging/Protocol Analyzing during Connect

The Data Hog Plus has a complete data logging and protocol analyzer system built into the converter.

When you use the CONNECT command to tie two or more channels together, you can also enable the log

file in one of two formats:

Text Format (“LOG”) :

This is the default format. The DH+ creates a file based on the current data and time and stores a

record of everything received from any port.

HTML Format (“LOGHTML”) :

This is a more advanced version of the log and is easier to read by most humans. However, the HTML

file is harder to look at in a standard text editor and some users may not want that.

For example, if you wanted to connect the USB port to the RS232 port and make an HTML log of all

communication, send the command:

CONNECT=COMU,COM1,LOGHTML

From this point on everything received on the USB is sent to the RS232 and everything received on the

RS232 is sent to the USB port. In addition, an HTML log file is created containing a complete record of

everything that happens. The HTML log file looks something like this:

The text version is similar but lacks the colors. The text log will look something like this:

19:00:25.473 USB : [0D]

19:00:25.473 COM1: [0D][0A]01000100F0C18000000000000000000000000Test

19:00:25.500 COM1: 020400AF0A010C1814151B0C18141702[0D][0A]

19:00:27.016 USB : B

19:00:27.016 COM1: B

19:00:27.035 USB : 0

19:00:27.039 COM1: 0

19:00:27.059 USB : 1

19:00:27.059 COM1: 1

19:00:27.078 USB : [0D]

19:00:27.078 COM1: [0D][0A]00AF0A[0D][0A]

19:00:27.375 USB : [15]

19:00:27.500 COM1: [02][00][01][FF][FE][01]Test[00] [00] [00]

19:00:27.516 COM1:)[98][15][1B])[98][17][02]D[04][04][1F][02][01]

19:00:27.531 COM1: [01][00][00][00][00][00][00][00][00][00][00][00][00][00][00]

19:00:27.539 COM1: [00][00][00][00] [00][00][02][10]DEFAULTX.SPD[0D]DEFAU

19:00:27.555 COM1: LTC.AXL[0D]DEFAULTX.LEN[08]DEFAULTX.GAP[08]DEFAULTX.HED[10]

19:00:27.578 COM1: [00] [F8][01][00][E8][01][B7][04][00][00] [00]

19:00:27.590 COM1: [F8][01][00][E8][01][B7][04][00][00]0[00]

 Page 48 of 74

Note that the log file is buffered to some degree. This means that if you pull the SD card out to inspect the

log file very quickly not everything in the log may be written to it. To combat this, the log file on the SD card

is forced to sync up every 5 seconds. Therefore, make sure you wait 5 seconds after capturing your

desired monitor data before pulling the card to ensure that it has been updated with the data you want.

It should also be noted that the DH+ stays in the CONNECT mode even if power is cycled or the SD card is

removed. You can even re-insert the SD card after removing it without needing to cycle power to start a

new log file.

If you want to stop the connection and logging data, you could do the following:

1) Open a terminal window connected to the USB COM port and at the baud rate desired.

2) Wait at least one second before sending any data.

3) Send three plus characters quickly (+++).

4) Wait two seconds.

5) The Data Hog Plus will respond with “(escape … Ctrl+A to resume)”.

6) Send the command: CONNECT=NONE

7) The connection is now broken and the Data Hog Plus will revert to its normal non-adapting mode.

 Page 49 of 74

8.3 – Data Capture (logging)

The Data Hog Plus now has two additional easy-to-use data capture system called “Fast Logging” and

“Plain Logging”. In these modes, you can easily capture data from a port and store it in a file without any

additional commands or other batch file work needed.

Plain Logging

To enable plain logging, simply specify one port on the CONNECT command and add the parameter

“PLAINLOG”. For example, to log everything received on COM1 (RS232 port) to a file send the command:

CONNECT=COM1,PLAINLOG

From this point on everything received on the RS232 port will be saved in a file named:

 yyyy-mm-dd hhmmsss.log

To disable the logging, simply send the command:

CONNECT=NONE

Note that depending on the baud rate and the amount of data being received, there can be up to a 5

second delay between receiving the data and it being saved on the SD card. It is recommended you wait

at least 5 seconds between capturing the data and powering the Data Hog off or pulling the SD card to be

sure it is saved.

Re-inserting an SD card after removal will automatically start a new log file. Users are free to pull the SD

card and re-insert it as often as desired.

Fast & Trigger Logging

The FASTLOG command is similar to the STORE command with some important changes. When it is run,

the Data Hog immediately stores everything received from a channel in file. It stays in this mode until it is

shut off or the SD Card is removed. FASTLOG is intended for those applications where the user only

wants the Data Hog to store data from a single channel and nothing else.

TRIGLOG is the same as FASTLOG, except it will automatically stop if ANY trigger activates. See the

TRIGGER section for more information on how to setup GPIO triggers. Note that the manual gives most

examples using FASTLOG so keep in mind that TRIGLOG would work in all those situations as well.

Enabling FASTLOG turns off any CONNECT functions and the system no longer responds to TRIGGER’s

or most other functions. If the SD card is removed, the system stops logging and returns to the normal

command mode. For example, if you had a AUTORUN.BAT file with these commands:

BOOTBAUD1=230400

FASTLOG1

A log file would be created based on the current date/time which contains everything received by the Data

Hog on the RS232 port at 230400. You can also specify the file name like this:

 FASTLOG1 MyFile.bin

FASTLOG always appends data onto the end of an existing file, so if you specify the same file name it will

add new log data. You can use the DEL command to erase the file first if that is desired. For example,

suppose you wanted to make a new file each time:

BOOTBAUD1=230400

DEL MyFile.bin

FASTLOG1 MyFile.bin

 Page 50 of 74

FASTLOG should be used with caution since most other functions are stopped during operation. However,

it is ideal in situations where high speed non-stop data must be captured. It flushes all data to SD card at

least once per second – so be sure to wait at least a second before pulling the card after data is sent.

While FASTLOG is active, the second LED will blink On/Off to indicate data is being written to the SD

Card. This is a handy way to verify data storage is happening.

It is recommended if you plan to pull the SD card out while logging is happening that you disable

commands to the port being monitored with the COMx=DISABLE command. This is to prevent data

coming in from being processed as commands when the SD card is out.

For example, suppose you want to log data from the RS232 port at 230400 baud whenever the unit is

turned on. You want that logging to also work if the SD card is removed and re-inserted. In this case, put

the following AUTORUN.BAT file on each SD card you are using for monitoring:

COM1=DISABLE

BOOTBAUD1=230400

FASTLOG1

This turns off commands for COM1 (the RS232 port), sets its baud to 230400, creates a file based on the

current date and time, and then starts the FASTLOG on the COM1 port.

NOTE: If this is the first time the batch file runs and the baud rate on the channel on power up is different

than the one being set with BOOTBAUD, you can get garbage at the beginning of the log file because the

buffer has captured some data before the baud rate changed. This will only happen the first time the batch

file is used on this particular Data Hog.

TRIGLOG is especially handy to start a new file whenever a GPIO pin changes. Consider this example:

COM1=DISABLE

BOOTBAUD1=230400

TRIGGER=6,PULLUP,FALLING

:LOOP

TRIGLOG1

GOTO LOOP

In this example, the log file is created for COM1 at 230400 and data is stored there. However, anytime

GPIO #6 is shorted to ground the log stops and then immediately restarts again (the GOTO LOOP causes

this). This allows you to restart the log anytime you wish!

ULTRA HIGH-SPEED LOGGING:

There is a special case for baud rates above 1Mbps. Because so much data is being received and written

to the SD Card the Data Hog Plus cannot process all activities it normally does. In this case, both

FASTLOG and TRIGLOG do the following if they are started from a baud rate above 1Mbps:

1) Turn off any LED updates (the LED’s will freeze in place).

2) Enter a very high-speed mode that simply stores data received onto the SD card.

Pulling the SD Card out or, in the case of TRIGLOG, activating a GPIO TRIGGER will exit the mode and

the LED’s will begin operating again.

 Page 51 of 74

MAXIMUM FILE SIZE:

To help prevent enormous file sizes and to support the FAT32 file system, both FASTLOG and TRIGLOG

support the setting in MAXFILESIZE. This command sets the maximum size of a log file before it is

automatically closed and new file reopened.

By default, this is set to 4GB (4,000,000,000). You can set it to any value you wish, but be careful in

making it extremely large because some file systems have trouble with files bigger than a certain point.

For example:

 MAXFILESIZE=1000000

Would set the maximum single FASTLOG or TRIGLOG file size to 1MB.

 Page 52 of 74

9 – GPIO (General Purpose Input/Output)

The Data Hog Plus supports up to six GPIO (General Purpose Input/Output) pins. These pins share the

SPI/I2C and Logic Level Serial port pins so cannot be used at the same time if these other pins are

enabled. GPIO is labeled 1 to 6 as follows:

Function Variable Name SEND/OUTPUT Control Shares Pin With ARM CPU Pin

GPIO #1 %G1 \G1x RXD PC0

GPIO #2 %G2 \G2x TXD PC1

GPIO #3 %G3 \G3x MOSI PB15

GPIO #4 %G4 \G4x MISO PB14

GPIO #5 %G5 \G5x CLK PB13

GPIO #6 %G6 \G6x CS PB12

Turning on GPIO functionality on any pin will disable the logic level serial (GPIO #1 or GPIO #2), the SPI

(GPIO #3-#6), or the I2C (GPIO #3-#5). Similarly, enabling the logic level serial, SPI, or I2C functions

automatically turns off the GPIO (if enabled).

To re-enable the logic level serial after using one or both pins for GPIO, send the command

“BAUD1=<baud>”, “GPIO=NONE”, “GPIO=G1OFF,G2OFF”, or “RESET”. Any of these will re-enable the

logic level serial.

Using the GPIO is done in a variety of ways. The primary way is to use the GPIO command (described

next) to configure and set the GPIO pin values. You do not usually have to preset a pin to be an output or

an input, simply indicate you want to either read the value of the pin or set it to a specific value like this:

 GPIO=G4OUT1 - Sets GPIO #4 to an output and sets its value to 1 (high, or +3.3V).

In addition, you can read the current GPIO value or change the output value with the “%Gx” variable or the

“\Gxy” code. In this case, you must preconfigure the pins as inputs or outputs or the value will be

meaningless. For example:

 GPIO=G1IN,PULLUP

 SENDU “GPIO #1 = %G1!\r\n”

This sends to the USB port the current GPIO #1 input which is being pulled high. To change the value of

an output pin, simply send it like this:

 GPIO=G1OUT0

 SENDU “\G11___BUGS___\G10”

This starts GPIO #1 output at a 0. Then it sets it to a 1, sends “___BUGS___” out the USB port, and sets it

to 0 again. If you were to measure the duration GPIO #1 was high, this would tell you how long the Data

Hog Plus took to load the transmit buffer with “___BUGS___”.

The GPIO pins are numbered like this:

Refer to the ST Microelectronics # STM32L451 data sheet for more specific information on the electrical

characteristics of the GPIO pins.

#6 #5 #4 #3 #2 #1

 Page 53 of 74

System Command – GPIO Format: GPIO=NONE / OFF

 GPIO=Gx

 GPIO=GxOFF

 GPIO=GxIN / GxIN,PULLUP/PULLDOWN

 GPIO=Gx OUTy / GxOy

The GPIO command configures the GPIO pins. To turn the GPIO pins off and revert to normal mode:

 GPIO=OFF - Turns off all GPIO configurations.

 GPIO=G1OFF - Turns off GPIO #1 configuration (can range from 1 to 6).

 GPIO=G4 - Returns the current status of GPIO #4.

To set a GPIO pin as an output, send the following command:

 GPIO=G1OUT0 - Sets GPIO #1 as an output and sets it to a 0 (Ground).

 GPIO=G1O0 - Same as above.

 GPIO=G6O1 - Sets GPIO #6 as an output and sets it to a 1 (+3.3V).

To set a GPIO pin as an input, send the following command:

 GPIO=G1IN - Sets GPIO #1 to an input and returns its current value (1 or 0). No pull

 resistor is enabled.

 GPIO=G3IN,PULLDOWN - Sets GPIO #3 to a pulled down input and returns its current value (1 or 0).

 GPIO=G5IN,PULLUP - Sets GPIO #5 to a pulled up input and returns its current value (1 or 0).

You can also use GPIO pin values in the SEND, RCV, OUTPUT, and IF commands using the variable

“%Gx” where “x” is from 1 to 6 and the “\Gxy” where “x” is from 1 to 6 and “y” is a 0 or 1. For example:

 IF %G1 = 0 GOTO MyLabel

This would jump to “MyLabel” if GPIO #1 had a current value of zero. To change GPIO output values

during a send, you can use:

 SEND1 “Hello\G11Goodbyte\G10”

This sends “Hello” out the RS232 port, sets GPIO #1 to a “1”, sends “Goodbye” out the RS232 port, and

then sets GPIO #1 to a “0”.

 Page 54 of 74

9.1 – GPIO Inputs

Each GPIO can be configured as an Input or Output. When configured as an Input, the GPIO has the

following characteristics:

• Can be left floating or can optionally be pulled High (to +3.3V) or Low (to Ground).

• Pull up or down resistance is about 40K ohms.

• A “low” (or “0”) is around 1V or less and a “high” (or “1”) is around 2V or more.

For example, suppose you wanted a batch file that output the time whenever GPIO #6 was pulled low. A

batch file like this may work (will exit if it receives a character on serial port):

GPIO=G6IN,PULLHIGH

; Loop until GPIO #6 goes low

:LOOP1

IF %r=1 GOTO DONE

IF %G6=1 GOTO LOOP1

; GPIO #6 went low!

SEND “Low at %H:%N:%S\r\n”

; Now loop until GPIO #6 goes high again

:LOOP2

IF %G6=0 GOTO LOOP2

GOTO LOOP1

:DONE

You can also use the “%Gx” variables as part of your SEND output. For example, suppose every second

you wanted to output the value of GPIO #1 configured as pulled low input:

GPIO=G1IN,PULLLOW

:LOOP1

; Output current value

SEND “GPIO #1 = %G1\r\n”

; Wait a second

IDLE on,1

IF %r=0 GOTO LOOP1

This exits if it receives a character on the serial port, otherwise it outputs the current GPIO input value once

per second.

WARNING! WARNING! WARNING!

DO NOT apply more than 5V into any of the GPIO pins! You will likely

permanently destroy the pin and possibly the entire Data Hog Plus if

you do so. The pins have some protection, but it is possible to ruin a

Data Hog Plus by applying too high a voltage to any pin! Diamond

Edge Technology cannot repair or replace units that have failed due to

this reason and you assume all risk when using the GPIO input

feature.

 Page 55 of 74

9.2 – GPIO Outputs

Each GPIO can be configured as an Input or Output. When configured as an Output, the GPIO has the

following characteristics:

• Can be set to High (“1” or +3.3V) or Low (“0” or Ground/0V).

• Can source or sink +/- 8mA per pin.

• DO NOT TRY TO DIRECTLY DRIVE HIGH CURRENT DEVICES FROM THE GPIO! You will likely

destroy the pin and/or the entire Data Hog Plus doing so.

The GPIO output function can be very useful in a multitude of situations. However, you must be careful in

using this feature as it possible to destroy the Data Hog Plus. Diamond Edge Technology cannot repair or

replace units that have failed due to incorrect usage of the GPIO Input or Output function. Please contact

us at ryan@detllc.com if you are unsure in advance.

One good use of the GPIO output function is to alert other devices that something has happened. For

example, suppose you want to pulse GPIO #1 once per second. A batch file like this would work:

:LOOP1

; Wait a second

IDLE on,1

; GPIO #1 High

GPIO=G1OUT1

; GPIO #1 Low

GPIO=G1OUT0

IF %r=0 GOTO LOOP1

This will make a short high pulse on GPIO #1 (about 50ms). You can also change the output state of any

GPIO pin inside of an output string. For example, if you wanted to make GPIO #1 high during the send

command you could have a batch file like this:

GPIO=G1OUT0

:LOOP1

; Wait a second

IDLE on,1

; Make GPIO #1 High during send

SEND “\G11___BUGS BUNNY___\r\n\G10”

; Repeat until we receive a character

IF %r=0 GOTO LOOP1

This pulse is much shorter, about 90 microseconds, because it does not take long to write to the internal

que of things to send out the serial port.

mailto:ryan@detllc.com

 Page 56 of 74

9.3 – EXTERNAL TRIGGER System

In addition to the other GPIO functions, you can use any of the six pins in “EXTERNAL TRIGGER” mode.

The external trigger is very similar to the GPIO Input ability, except when the line changes state it triggers

an interrupt inside the DH+ which (a) can wake it from SLEEP or DEEPSLEEP, (b) stores the exact date &

time of the event in a special register (%X1 to %X6 for “yyyy-mm-dd@hh:mm:ss” or %x1 to %x6 for

“unixepochtime.msec”), and (c) sets another special register to “1” when the state activates the interrupt.

The external trigger pins share the SPI/I2C and Logic Level Serial port pins so cannot be used at the same

time if these other pins are enabled. Trigger #1 to #6 is as follows:

Function

Variable Name
(for current state)

Variable Name (for
last activation time/date)

Variable Name
(for trigger status)

Shares
Pin With

TRIGGER #1 %G1 %X1 and %x1 %K1 RXD

TRIGGER #2 %G2 %X2 and %x2 %K2 TXD

TRIGGER #3 %G3 %X3 and %x3 %K3 MOSI

TRIGGER #4 %G4 %X4 and %x4 %K4 MISO

TRIGGER #5 %G5 %X5 and %x5 %K5 CLK

TRIGGER #6 %G6 %X6 and %x6 %K6 CS

Turning on the EXTERNAL TRIGGER for any pin will disable the logic level serial (TRIGGER #1 or

TRIGGER #2), the SPI (TRIGGER #3-#6), or the I2C (TRIGGER #3-#5). Similarly, enabling the logic level

serial, SPI, or I2C functions automatically turns off the TRIGGER (if enabled).

To re-enable the logic level serial after using one or both pins for a TRIGGER, send the command

“BAUD1=<baud>”, “TRIGGER=NONE”, or “RESET”. Any of these will re-enable the logic level serial.

Using the EXTERNAL TRIGGER is done in a variety of ways. The primary way is to use the TRIGGER

command (described next) to configure and set the TRIGGER pin values like this:

 TRIGGER=1,FALLING,PULLUP - Enables Trigger #1, pulls it high (to 3.3V), and sets the trip to

 be the falling edge (pin going from High-3.3V to Low-Ground).

 TRIGGER=4,EITHER,NOPULL - Enables Trigger #4, does not pull it high or low, and sets the

 trip to be either low to high or high to low.

You can read the current input value with the “%Gx” variable. For example:

 TRIGGER=1,FALLING,PULLUP

 SENDU “TRIGGER #1 = %G1!\r\n”

This sends out the USB port the current Trigger #1 value (which is being pulled high). The TRIGGER pins

are numbered the same as the GPIO pins like this:

#6 #5 #4 #3 #2 #1

 Page 57 of 74

Command – TRIGGER Format: TRIGGER=NONE / OFF

 TRIGGER=<#>,<mode>,<pull>,<tim>,<wake>,<store>

 TRIGGER=<num>,OFF

 TRIGGER=RESET

The TRIGGER command configures the EXTERNAL TRIGGER functions. To turn the TRIGGER pins off

and revert to normal mode:

 TRIGGER=OFF - Turns off all TRIGGER configurations.

 TRIGGER=1,OFF - Turns off TRIGGER #1 configuration (can range from 1 to 6).

To show the current settings of an EXTERNAL TRIGGER, send a command like this:

 TRIGGER - Returns the TRIGGER status of all pins.

 TRIGGER=4 - Returns the current status of TRIGGER #4.

To set an EXTERNAL TRIGGER, send a command like this:

 TRIGGER=1,FALLING,PULLUP - Sets TRIGGER #1 to pull-up and trigger when it falls to ground.

 TRIGGER=4,RISING,PULLDOWN - Sets TRIGGER #4 to a pulled down and triggers when it rises

 to 3.3V.

 TRIGGER=1,BOTH,NOPULL - Sets TRIGGER #1 to trip on either low->high or high->low and

 sets it to have no pull resistor.

 TRIGGER=1,BOTH,NOPULL,NOWAKE - Sets TRIGGER #1 to trip on either low->high or high->low and

 sets it to have no pull resistor. It also will NOT wakeup the unit

 from SLEEP, IDLE, or DEEPSLEEP.

To reset the trigger files (if saving to a Text, CSV, or Timestamp file), send the command:

 TRIGGER=RESET - Resets all triggers and opens new files (if any).

Each TRIGGER is followed by a series of parameters as shown above. Only one trigger at a time can be

set per command (unlike the GPIO function which allows you to set multiple pins with one command).

Each parameter is described below:

Parameter <#>:
1 to 6 Specifies the EXTERNAL TRIGGER number to enable, disable, or return the status of

Parameter <mode>:

FALLING
Sets the TRIGGER to activate when the pin goes from a “High” state (logic level 1 or 3.3V)
to “Low” state (logic level 0, zero volts, or Ground).

RISING
Sets the TRIGGER to activate when the pin goes from a “Low” state (logic level 0, zero
volts, or Ground) to a “High” state (logic level 1 or 3.3V).

BOTH TRIGGER will activate when it is either RISING or FALLING (any change of state).

Parameter <pull>:

NOPULL
Does not apply any pull on the pin. You must connect it to something that is either 3.3V or
0V for the system to work properly.

PULLUP Pulls the pin to 3.3V through a 40K resistor.
PULLDOWN Pulls the pin to 0V (ground) through a 40K resistor.

Parameter <tim>:

<val>sec

Set’s the maximum trigger rate, or timing. This value specifies a debounce value to keep
the trigger from tripping multiple times due to a noisy signal. For example:
 TRIGGER=1,FALLING,PULLUP,0.5sec

This would set the maximum frequency for TRIGGER 1 to once every 0.5 seconds (2
hertz). The maximum resolution is milliseconds.

(blank)
If this parameter is not specified, all EXTERNAL TRIGGER’s default to a timing of 0.1sec
(100 milliseconds).

 Page 58 of 74

Parameter <wake>:
NOWAKE Disables waking the DH+ from SLEEP, IDLE, or DEEPSLEEP when the pin activates.

WAKE (or blank)
Enables waking the DH+ from SLEEP, IDLE, or DEEPSLEEP when the pin activates. This
is the default value if nothing is specified.

Parameter <store>:

(blank)
If nothing is entered for this parameter, no automatic storage of the EXTERNAL TRIGGER
activations occurs. This is the default.

TEXT

Enables automatic storage of any activation in a text file automatically created in the
Download Directory (defaults to the root directory). The file will be an easy-to-read
description of each activation with a millisecond timestamp and exactly what happened.

For example, if you sent TRIGGER=1,FALLING,PULLUP,TEXT then a typical output file

might contain values like this:

#1: 1->0 on 2021-04-02 @ 21:37:05.613

#1: 1->0 on 2021-04-02 @ 21:37:05.910

The “#” is the trigger, the “1->0” indicates it tripped on the pin going from HIGH to LOW,
and then the following values are the date and time of the activation.

CSV

Similar to above except the format is CSV (comma separated values) which is very easy to
directly open with Excel or other similar software.

For example, if you sent TRIGGER=1,FALLING,PULLUP,CSV then a typical output file

might contain values like this:

#1,1->0,2021-04-02,21:30:31.539

#1,1->0,2021-04-02,21:30:36.773

The “#” is the trigger, the “1->0” indicates it tripped on the pin going from HIGH to LOW,
and then the following values are the date and time of the activation.

TIMESTAMP

Similar to the CSV format except the time is stored as a UNIX timestamp value. This is the
number of seconds since Jan 1st, 1970, with the decimal part equaling the milliseconds
value.

For example, if you sent TRIGGER=1,RISING,PULLDOWN,TIMESTAMP then a typical

output file might contain values like this:

#1,0->1,1617399937.922

#1,0->1,1617399939.129

#1,0->1,1617399941.129

COM1, COM2, COMU

Outputs the activation to the specified COM port (always in CSV format). The example for
CSV above shows what would be sent out the specified COM port when an EXTERNAL
TRIGGER activates.

NOTE: You can use the TYPE, TYPEH, and any of the download commands to view a currently open

TEXT, CSV, or TIMESTAMP file. When the file access is complete, data is again written to the file. This is

normally a problem free situation, but if you have very frequent TRIGGER’s you are better off using this

command first:

 TRIGGER=RESET

To force a new file to open before accessing the currently open trigger output file.

USING %K1 to %K6 VARIABLES:

The %K1 to %K6 values will return a “1” when the TRIGGER activates, otherwise they will return zero.

Note that these variables are different than the %G1 to %G6 which return the current state of the pin (either

a “1” or “0”). Instead, %K1 to %K6 return a “1” immediately after the TRIGGER activates by either falling or

rising (depending on the way the TRIGGER is configured).

 Page 59 of 74

For example, suppose you wanted to output the time whenever TRIGGER #6 was pulled low. This could

be done by connecting a pushbutton between ground and TRIGGER #6 and using a batch file like this (it

will exit the program if it receives a character on serial port):

TRIGGER=6,PULLUP,FALLING

; Loop until TRIGGER #6 activates

:LOOP1

IF %r=1 GOTO DONE

IF %K6=0 GOTO LOOP1

; TRIGGER #6 activated!

SEND “Triggered at %H:%N:%S\r\n”

; Loop back and repeat

GOTO LOOP1

:DONE

SEND “DONE!\r\n”

IMPORTANT: Reading any %K variable will only return “1” a single time for each activation. Reading it

clears it back to “0”. This allows you to repeatedly check the variable and know that it only returns “1”

when the trigger is activated freshly.

You can also use the “%Gx” variables with TRIGGER’s and part of your SEND output. For example,

suppose every second you wanted to output the value of TRIGGER #1 configured as pulled low input:

TRIGGER=1,RISING,PULLDOWN

:LOOP1

; Output current value

SEND “TRIGGER #1 = %G1\r\n”

; Wait a second

IDLE on,1

IF %r=0 GOTO LOOP1

This exits if it receives a character on the serial port, otherwise it outputs the current TRIGGER #1 pin

value once per second. This is identical to using the pin as a GPIO input.

USING %X1 to %X6 and %x1 to %x6 VARIABLES:

The %X1 to %X6 and %x1 to %x6 values return the last date and time a trigger was activated. The

difference between “X” and “x” is that the “X” returns it in this format:

 yyyy-mm-dd @ hh:mm:ss.msec

And “x” returns it in this format:

 <unix epoch time>.<msec>

For example, suppose you wanted to send out the USB port the time of each TRIGGER #2 activation. You

could use the “COMU” parameter to output the value (described above), but for more custom control

instead create a batch file with these lines:

TRIGGER=2,FALLING,PULLUP

:LOOP1

IF %r=1 GOTO DONE

IF %K2=0 GOTO LOOP1

SENDU “Trigger #2=%X2 (Epoch %x2)\r\n”

GOTO LOOP1

:DONE

SENDU “Done!\r\n”

 Page 60 of 74

EXTERNAL TRIGGER EXAMPLES:

Example 1 – Recording the winners of a toy car race:

Assume you have sloped track with four lanes. At the end of each lane there is a switch that toy cars close when

they reach the end of the track. You can very accurately record the “winner” of each race by doing this:

1) Tie one side of each lane’s switch to ground and tie this same ground to the “GND” input pin on the DH+.

2) Tie the other side of the lane switch to EXTERNAL TRIGGER #1, #2, #3, and #4.

3) Connect to the Data Hog Plus and send these commands:
TRIGGER=NONE

TRIGGER=1,FALLING,PULLUP,NOWAKE,TEXT

TRIGGER=2,FALLING,PULLUP,NOWAKE,TEXT

TRIGGER=3,FALLING,PULLUP,NOWAKE,TEXT

TRIGGER=4,FALLING,PULLUP,NOWAKE,TEXT

From this point on, any time EXTERNAL TRIGGER #1-#4 gets connected to ground through the switch, it’s

exact time will be recorded in a text file on the SD card.

4) Make sure an SD card is installed and run your race!

5) To see the results, use the TYPE command, pull out the SD card and use a computer to view the file, or use

the D-Terminal app to “View” the file on the SD card. A typical race result might look like this:

#3: 1->0 on 2021/04/03 @ 23.09.32.426

#1: 1->0 on 2021/04/03 @ 23.09.33.313

#2: 1->0 on 2021/04/03 @ 23.09.33.809

#4: 1->0 on 2021/04/03 @ 23.09.34.398

6) Note that the DH+ will stay in this mode until you change it. You can power it off and later power it back on

ready to work. You could also send the additional command after it is powered on:
 DEEPSLEEP

In this case the LED’s will go off and the DH+ will continue to record the triggers for about 2 weeks from a 9V

battery.

Example 2 – Recording the winners of a toy car race (2nd version):

Assume the same as Example #1 except you want to send the trigger output times live over the USB port. This is

similar to sending it to a text file, except there is no file created and instead you read the values out in real time

using a terminal program.

1) Setup the hardware exactly the same.

2) Connect to the Data Hog Plus and send these commands:
TRIGGER=NONE

TRIGGER=1,FALLING,PULLUP,NOWAKE,USB

TRIGGER=2,FALLING,PULLUP,NOWAKE,USB

TRIGGER=3,FALLING,PULLUP,NOWAKE,USB

TRIGGER=4,FALLING,PULLUP,NOWAKE,USB

From this point on, any time EXTERNAL TRIGGER #1-#4 gets connected to ground through the switch, it’s

exact time will be sent out the USB port.

3) Make sure you have a terminal program opened to view the output and run your races!

 Page 61 of 74

Example 3 – Increase the bargraph each time a button is pressed.

In this example you want the bar graph to display increasing amount each time a button is pressed. You also

want to send the level out the RS232 port at 115200bps:

1) Connect a pushbutton between EXTERNAL TRIGGER #1 and the GND pin.

2) Create a file on the SD card named “ButtonPress.bat” and fill it with this code:
BAUD1=115200

TRIGGER=1,FALLING,PULLUP

:LOOP0

LEDO=ALL

SEND1 “Level 0!\r\n”

:LOOP1

IF %K1 = 0 GOTO LOOP1

LEDO=1,1

SEND1 “Level 1!\r\n”

:LOOP2

IF %K1 = 0 GOTO LOOP2

LEDO=2,1

SEND1 “Level 2!\r\n”

:LOOP3

IF %K1 = 0 GOTO LOOP3

LEDO=3,1

SEND1 “Level 3!\r\n”

:LOOP4

IF %K1 = 0 GOTO LOOP4

LEDO=4,1

SEND1 “Level 4!\r\n”

:LOOP5

IF %L1 = 0 GOTO LOOP5

LEDO=5,1

SEND1 “Level 5!\r\n”

:LOOP6

IF %K1 = 0 GOTO LOOP6

LEDO=6,1

SEND1 “Level 6!\r\n”

:LOOP7

IF %K1 = 0 GOTO LOOP7

LEDO=7,1

SEND1 “Level 7!\r\n”

:LOOP8

IF %K1 = 0 GOTO LOOP8

LEDO=8,1

SEND1 “Level 8!\r\n”

:LOOP9

IF %K1 = 0 GOTO LOOP9

LEDO=9,1

SEND1 “Level 9!\r\n”

:LOOP10

IF %K1 = 0 GOTO LOOP10

LEDO=10,1

SEND1 “Level 10!\r\n”

:LOOPDONE

IF %K1 = 0 GOTO LOOPDONE

GOTO LOOP0

3) RUN “ButtonPress.bat”. Each time the button is pressed the LED bargraph will increment by one! To exit,

unplug the SD card, wait one second, and plug it back in!

 Page 62 of 74

9.4 – ADC (Temperature & Voltage Monitor) System

The Analog to Digital Converter (ADC) system is special function of GPIO Pins #1 and #2. You can also

enable the current Temperature monitoring.

The ADC pins share the Logic Level Serial port pins so that cannot be used at the same time if ADC Pin #1

or Pin #2 is enabled (does not apply to ADC Temperature). ADC#1, ADC#2, and ADC#T is as follows:

Function

Variable Name
(for current state)

Variable Name
(for output as an integer)

Variable Name
(for output as a float)

Shares
Pin With

ADC #1 %G1 %V1 %v1 RXD

ADC #2 %G2 %V2 %v2 TXD

ADC #T %G3
%VT (Celcius)

%Vt (Fareheight)

%vT (Celcius)

%vt (Fareheight)
(No pin used)

Turning on the ADC #1 or ADC #2 will disable the logic level serial, TRIGGER #1 or TRIGGER #2, or GPIO

#1 or #2. Similarly, enabling the logic level serial, TRIGGER #1 or #2, or GPIO #1 or #2 will disable that

pin for ADC. To re-enable the logic level serial after using one or both pins for ADC, send the command

“BAUD1=<baud>”, “ADC=NONE”, or “RESET”. Any of these will re-enable the logic level serial.

Command – ADC Format: ADC=NONE / OFF

 ADC=<#>,DISABLE / OFF

 ADC=<#>,<zero>,<calibration>,off=<val>

 ADC=<#>,<zero>,r1=<ohms>,r2=<ohms>

The ADC command configures the ADC functions. To turn the ADC pins off and revert to normal mode:

 ADC=OFF - Turns off all ADC configurations.

 ADC=1,OFF - Turns off ADC #1 configuration (can range from 1 to 2).

 ADC=T,OFF - Turns off ADC #T (Temperature) configuration.

To show the current settings of an ADC channel, send a command like this:

 ADC - Returns the ADC status of all pins.

 ADC=1 - Returns the current status of ADC #1.

To set an ADC Channel, send a command like this:

 ADC=1,100,1.0 - Sets ADC #1 to on with a zero point of “100” and a calibration

 factor of 1.00 (see below)

 ADC=1,ON,100,1.0 - Same as above

 ADC=1,ON,0,0.000819,off=-0.25 - Sets ADC #1 to calibration of 0.00819 and offset of -0.25.

 ADC=T,ON - Turns on the temperature ADC channel.

The <zero> parameter specifies the number read back from the 12 Bit ADC channel to be considered a

zero. The full range of the ADC is 0-4095, but not all inputs get all the way down to “0”. You can easily

calibrate the channel to report a different reading as “0” using this parameter.

<calibration> is the adjustment applied to the ADC value when reporting it with the %V and %v variables.

For example, suppose you sent the following command:

 ADC=1,ON,200,2.5

In this setup, the ADC channel is read and a value of “1255” comes back. The DH+ subtracts 200 (the

zero value) from the value read and then multiplies it by 2.5 (the calibration). So “1255” is reported as

“2637” (%V1) or “2637.5” (%v1). This ability makes more sense when connected to a battery or other

device (see examples below).

 Page 63 of 74

ADC EXAMPLE #1: Reading a voltage from 0V to 3.3V

In the simplest form, to read a voltage from zero to 3.3 send the following command:

 ADC=1,ON,0,0.000819

To understand how this works, consider that the Analog to Digital converter returns a number from “0” to

“4095” based on the voltage on the pin. Zero represents no voltage and “4095” represents 3.3V. In other

words, if the number “4095” was returned you can be certain that 3.3V was being applied to the pin.

In reality it is difficult to get a full “4095” reading back. Resistance and other factors tend to reduce the

number slightly, so a reading of around “4030” is more typical for a full 3.3V input. To convert “4030” to

3.3, multiply the reading by “0.000819” to get “3.30”.

The following batch file will record the voltage reading once every 5 seconds saving it in a file named

“Voltages.txt” and outputting it to the serial port. It stops if it receives a character on the serial port:

ADC=OFF

ADC=1,ON,0,0.000819

OPENA Voltages.txt

SEND “Recording voltages:\r\n”

:LOOP1

%1 = “%Y-%M-%D @ %H:%N - Current Voltage=%v1\r\n”

OUTPUT %1

SEND %1

SLEEP on,60

IF %r=0 GOTO LOOP1

SEND “\r\nDone!\r\n”

Let this run for a while, varying the voltage on pin #1 from 0V to 3.3V, and then send a character to get it to

stop. When it’s done, send TYPE “Voltage.txt” and you would see something like this:

2021-04-05 @ 19:17 - Current Voltage=2.35

2021-04-05 @ 19:18 - Current Voltage=2.85

2021-04-05 @ 19:18 - Current Voltage=3.35

2021-04-05 @ 19:18 - Current Voltage=0.34

2021-04-05 @ 19:18 - Current Voltage=1.96

2021-04-05 @ 19:18 - Current Voltage=1.65

ADC EXAMPLE #2: Reading a voltage from a 12V battery (0V to 14.5V range)

Reading a voltage HIGHER than 3.3V is also possible with the DH+, but it does require some extra

electronics. You must NEVER apply a voltage higher than 3.3V to the pin, but you can easily adjust for this

using a “resistor divider” network.

A resistor divider is two resistors. You connect one of them to the input voltage (the 12V battery in this

case), and the other one to this resistor and ground. The resistor connected to the battery is named “R1”

and the resistor from R1 to ground is R2. Here is a schematic of the circuit:

 Page 64 of 74

As is shown in the schematic, R1 is labeled as a 100K resistor and R2 is labeled as a 30K resistor. These

are two commonly available resistors and by running the 12V battery through this circuit, it converts around

14.5V down to 3.3V so that the voltage input is never exceeded.

To determine the right values, it is handy to use a “Voltage Divider Calculator”. There are many free ones

available such as the one at: https://ohmslawcalculator.com/voltage-divider-calculator

Simply enter in the R1 value (100K is a good place to start), the maximum input voltage (14.5 Volts in this

case), and the desired maximum output voltage (3.3V) and click “Calculate”. This looks something like:

To connect this to the Data Hog Plus, it looks something like

this:

https://ohmslawcalculator.com/voltage-divider-calculator

 Page 65 of 74

Now that the circuit is in place, hook the negative side of the battery to the DH+ ground pin and the positive

side to the resistor R1 that has nothing else connected to it. It is also necessary to set the ADC channel to

correctly report the voltage. This is fairly easy by using the built-in calibration calculator like this:

 ADC=1,ON,R1=100000,R2=30000

The DH+ will automatically calculate the calibration (in this case “0.003491”). NOTE: It is often helpful to

manually measure the resistors with a multi-meter before using the above commands. A standard “100L”

resistor can fluctuate quite a bit, and your accuracy will be improved if you use correct values.

Finally, sometimes errors can creep into the measurement. A final adjustment can be made with the

“Offset” parameter. For example:

 ADC=1,ON,R1=100000,R2=30000,OFF=0.25

This would add 0.25 to every measurement. You will need to do some tests to determine if this value is

necessary depending on various factors of your setup.

To record the battery voltage as described in ADC Example #1, your new batch file would read:

ADC=OFF

ADC=1,ON,R1=100000,R2=30000

OPENA Voltages.txt

SEND “Recording voltages:\r\n”

:LOOP1

%1 = “%Y-%M-%D @ %H:%N - Current Voltage=%v1\r\n”

OUTPUT %1

SEND %1

SLEEP on,60

IF %r=0 GOTO LOOP1

SEND “\r\nDone!\r\n”

 Page 66 of 74

10 – Complete Example (SPI Radio Module Monitor)

Many companies make development kits and other tools for evaluating their products.

Unfortunately, most of these devices are setup be used almost exclusively with a PC and a USB

port (sometimes with an added wall wart power supply). Real world testing and evaluation can be

difficult because PC’s don’t have SPI, I2C, or logic level serial ports built in and power is difficult to

supply if you don’t have a USB available.

The Data Hog Plus was designed to overcome these limitations and give engineers, developers,

and companies an easy to use and sophisticated tool for evaluating devices with alternate

communication channels. In addition, the DH+ can log details or provide a passthrough function

which greatly helps debugging and development.

The following is a detailed example of how the Data Hog Plus can be used to implement a

complex system. Data Hog #1 serves as a radio transmitter sending out the current time once per

second. Data Hog #2 serves as the radio receiver which scans for the time and, whenever it is

received, it shows the strength of the signal on the ten-segment bar graph and records the time

and the signal strength in a log file on the SD card. The files for this example (along with other

example files) are included on the SD card provided with the DH+ in the “SAMPLE TX-RX

TRANSMITTER” sub-directory.

NOTE: This example shows using the Data Hog Plus-P version. This works the same as the -U

and -W models except the -P doesn’t have a USB port which does not effect this example.

Project Goals:

• Make a battery powered radio transmitter and receiver.

• Data Hog Plus #1 with a Semtech # SX1232 module will be setup as a transmitter.

• Data Hog Plus #2 with a Semtech # SX1232 module will be setup as a receiver.

• When both units are powered on:

o The transmitter sends the current time over the radio once per second.

o If the second radio receives it, it displays the strength of the signal on the bar graph.

o Receiver will also store in a log file the strength of the signal and the time it received.

The log file will look like something like this (Lxx = strength from 1-10):

FILE: "2020-11-07 194813.txt"

L07-19:48:11

L07-19:48:12

L08-19:48:13

L09-19:48:14

L10-19:48:15

L10-19:48:16

L10-19:48:17

• The configuration of the transmitter and receiver can easily be controlled, changed, and

monitored using the Data Hog programming system and batch file control.

• Because they are small battery powered devices, both the receiver and transmitter can be

moved in and out of building and separated by distance to gage the affect on the radio

signal.

 Page 67 of 74

Equipment Needed:

1) Two Data Hog Plus-P, Data Hog Plus-U, or Data Hog Plus-W units with included cables

and SD card.

2) Semtech Corporation Evaluation Kit # SX1232-32SKA915 with two SX1232 module PCB’s:

3) Two 9V batteries.

Setting up the Transmitter:

The Data Hog Transmitter is created following these steps:

1) Plug in wires into the side port on the DH+ as shown here:

Wire colors are as follows:

 +3.3V – Red CLK – Brown

 GND – Black MISO – Orange

 CS – Purple MOSI – White

 Page 68 of 74

2) Connect the other side of the wires to the SX1232 module as shown here:

Pin #1 – Brown

Pin #2 – Red

Pin #3 – White

Pin #4 – Black

Pin #7 – Purple

Pin #8 – Orange

NOTE: Check the Semtech instructions to verify the pinout,

which may change without notice!

3) Now plug the SD card for the transmitter into your computer.

4) Copy the file:
 AUTORUN.BAT

From the directory:
 /SAMPLE TX-RX TRANSMITTER/TRANSMITTER

To the root directory of the SD card. This causes the DH+ to automatically run this file when

it powers up.

5) Plug the SD card into the DH+.

6) Install a 9V battery.

7) Power on the DH+.

8) You will see the four middle LED’s flash periodically whenever the system is transmitting.

If you plug in a serial cable + NULL modem adapter and then use D-Terminal or another terminal

program (set to default baud rate of 19200bps) you can send a Ctrl+X to the DH+ to break out of

the AUTORUN.BAT file. The terminal program will also indicate “Sending…” every second.

Setting up the Receiver:

The Data Hog Receiver is created following these steps:

1) Plug in wires into the side port on the DH+ exactly the same as the Transmitter.

2) Plug the wires into the SX1232 module exactly the same as with the Transmitter.

3) Now plug the SD card for the receiver into your computer.

4) Copy the file:
 AUTORUN.BAT

From the directory:
 /SAMPLE TX-RX TRANSMITTER/RECEIVER

To the root directory of the SD card. This causes the DH+ to automatically run this file when

it powers up.

5) Install a 9V battery.

6) Power on the DH+.

7) If the transmitter is also on, the receiver should start showing signal strength after a few

seconds!

 Page 69 of 74

Example of completed Project:

 Page 70 of 74

Transmitter “AUTORUN.BAT” file:

//---

// DATA HOG WITH SEMTECH - TRANSMITTER

//---

//Setup LED’s (normal mode) and SPI Port Config

LEDS=1

SPI=ENABLE,MASTER,3,0,0,MSB,MAN

SEND1 "Setting Mode..."

// Set Transmitter to Standby

SENDS "\0\x81\x01\1"

// Setup Semtech Transmitter Variables

//REG RegBitrateMsb 0x02 0x00

//REG RegBitrateLsb 0x03 0xD5

//REG RegFdevMsb 0x04 0x09

//REG RegFdevLsb 0x05 0x9A

SENDS "\0\x82\x00\xD5\x09\x9A\1"

//REG RegPaConfig 0x09 0x8F

//REG RegPaRamp 0x0A 0x09

SENDS "\0\x89\x8F\x09\1"

//REG RegOcp 0x0B 0x3B

//REG RegLna 0x0C 0x23

//REG RegRxConfig 0x0D 0x0E

SENDS "\0\x8B\x3B\x23\x0E\1"

//REG RegRxBw 0x12 0x10

//REG RegAfcBw 0x13 0x11

SENDS "\0\x92\x10\x11\1"

//REG RegAfcFei 0x1A 0x01

SENDS "\0\x9A\x01\1"

//REG RegPreambleDetect 0x1F 0xAA

SENDS "\0\x9F\xAA\1"

//REG RegOsc 0x24 0x07

SENDS "\0\xA4\x07\1"

//REG RegSyncValue1 0x28 0xAA

//REG RegSyncValue2 0x29 0xBB

//REG RegSyncValue3 0x2A 0xCC

//REG RegSyncValue4 0x2B 0xDD

SENDS "\0\xA8\xAA\xBB\xCC\xDD\1"

//REG RegPayloadLength 0x32 0x40

SENDS "\0\xB2\x40\1"

//REG RegFifoThresh 0x35 0x8F

SENDS "\0\xB5\x8F\1"

//REG RegPaDac 0x5A 0x87

SENDS "\0\xDA\x87\1"

SEND1 “\r\n”

 Page 71 of 74

// **** SET TO TRANSMIT MODE ****

SEND1 "Setting to transmit..."

//REG RegOpMode 0x01 0x03 (TX) 0x05 (RX)

SENDS "\0\x81\x03\1"

SEND1 "\r\n"

// **** MAIN LOOP ****

// Send the current time. Start with CS=0,

// then the header + length, then the time (8 chars)

// followed by CS=1

:LOOP

SEND1 "Sending..."

SENDS "\0\x80\x08%H:%N:%S\1"

// Wait for 1 second.

IDLE 1

SEND1 "\r\n"

// Check if we have received an 0x18 on the RS232 port.

// If so, exit the program. If not, loop back to resend

// the time.

:CHECKRCV

IF %a="0" GOTO LOOP

RCV1 "%c"

IF %1="\x18" GOTO DONE

GOTO CHECKRCV

// Received an 0x18 on RS232 port, exit.

:DONE

SENDS "\0\x81\x01\1"

SEND1 "\r\nDONE!\r\n"

 Page 72 of 74

Receiver “AUTORUN.BAT” file:

//---

// DATA HOG WITH SEMTECH - RECEIVER

//---

//Setup LED’s (off) and SPI Port Config

LEDS=3

LEDLEVEL=0

SPI=ENABLE,MASTER,3,0,0,MSB,MAN

// Open a log file

OPENA

SEND1 "Setting Mode..."

// Set to Standby

SENDS "\0\x81\x01\1"

//REG RegBitrateMsb 0x02 0x00

//REG RegBitrateLsb 0x03 0xD5

//REG RegFdevMsb 0x04 0x09

//REG RegFdevLsb 0x05 0x9A

SENDS "\0\x82\x00\xD5\x09\x9A\1"

//REG RegPaConfig 0x09 0x8F

//REG RegPaRamp 0x0A 0x09

SENDS "\0\x89\x8F\x09\1"

//REG RegOcp 0x0B 0x3B

//REG RegLna 0x0C 0x23

//REG RegRxConfig 0x0D 0x0E

SENDS "\0\x8B\x3B\x23\x0E\1"

//REG RegRxBw 0x12 0x09

//REG RegAfcBw 0x13 0x12

SENDS "\0\x92\x09\x12\1"

//REG RegAfcFei 0x1A 0x01

SENDS "\0\x9A\x01\1"

//REG RegPreambleDetect 0x1F 0xAA

SENDS "\0\x9F\xAA\1"

//REG RegOsc 0x24 0x07

SENDS "\0\xA4\x07\1"

//REG RegSyncValue1 0x28 0xAA

//REG RegSyncValue2 0x29 0xBB

//REG RegSyncValue3 0x2A 0xCC

//REG RegSyncValue4 0x2B 0xDD

SENDS "\0\xA8\xAA\xBB\xCC\xDD\1"

//REG RegPayloadLength 0x32 0x40

SENDS "\0\xB2\x40\1"

//REG RegFifoThresh 0x35 0x8F

SENDS "\0\xB5\x8F\1"

 Page 73 of 74

//REG RegPaDac 0x5A 0x87

SENDS "\0\xDA\x87\1"

SEND "\r\n"

// **** SET TO RECEIVE MODE ****

SEND "Setting to Receive, Variable Length, Zero Payload..."

//REG RegOpMode 0x01 0x03 (TX) 0x05 (RX)

SENDS "\0\x81\x05\1"

SEND "\r\n"

// *** Wait for Packet ***

:LOOP

LEDLEVEL=0

SEND1 "Receiving..."

:LOOP2

SENDS "\0\x3F"

RCVS "%B\1"

IF %1 .2 1 GOTO GotPacket

:CHECKRCV

IF %a="0" GOTO LOOP2

RCV1 "%c"

IF %1="\x18" GOTO DONE

GOTO CHECKRCV

:DONE

SENDS "\0\x81\x01\1"

SEND1 "\r\nDONE!\r\n"

CLOSE

EXIT

:GotPacket

SENDS "\0\x11"

RCVS "%B\1"

IF %1 < "60" GOTO Level10

IF %1 < "80" GOTO Level9

IF %1 < "100" GOTO Level8

IF %1 < "120" GOTO Level7

IF %1 < "140" GOTO Level6

IF %1 < "160" GOTO Leve5

IF %1 < "180" GOTO Leve4

IF %1 < "200" GOTO Leve3

IF %1 < "220" GOTO Leve2

LEDLEVEL=1

OUTPUT “L01-“

GOTO GetValues

:Level10

LEDLEVEL=10

OUTPUT “L10-“

GOTO GetValues

:Level9

LEDLEVEL=9

OUTPUT “L09-“

GOTO GetValues

:Level8

LEDLEVEL=8

OUTPUT “L08-“

GOTO GetValues

 Page 74 of 74

:Level7

LEDLEVEL=7

OUTPUT “L07-“

GOTO GetValues

:Level6

LEDLEVEL=6

OUTPUT “L06-“

GOTO GetValues

:Level5

LEDLEVEL=5

OUTPUT “L05-“

GOTO GetValues

:Level4

LEDLEVEL=4

OUTPUT “L04-“

GOTO GetValues

:Level3

LEDLEVEL=3

OUTPUT “L03-“

GOTO GetValues

:Level2

LEDLEVEL=2

OUTPUT “L02-“

:GetValues

SEND1 " ["

SENDS "\0\x00"

RCVS "%B%8s\1"

SEND1 "%2"

OUTPUT “%2\r\n”

:GetFIFO

SENDS "\0\x3F"

RCVS "%B\1"

IF %1 .6 1 GOTO Empty

SENDS "\0\x00"

RCVS "%B\1"

SEND1 " 0x%1"

GOTO GetFIFO

:Empty

SEND1 "]\r\n"

GOTO LOOP

Receiver output to RS232 port (defaults to 19200 baud):

Setting Mode...

Receiving... [19:08:40]

Receiving... [19:08:41]

Receiving... [19:08:42]

Receiving... [19:08:43]

Receiving... [19:08:44]

Receiving... [19:08:45]

Receiving...

